DOI QR코드

DOI QR Code

Recent Research Trends of Mixed Matrix Membranes for CO2 Separation

이산화탄소 분리용 혼합 매질 분리막 최신 연구 동향

  • Chi, Won Seok (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Lee, Jae Hun (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Park, Min Su (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Kim, Jong Hak (Department of Chemical and Biomolecular Engineering, Yonsei University)
  • 지원석 (연세대학교 화공생명공학과) ;
  • 이재훈 (연세대학교 화공생명공학과) ;
  • 박민수 (연세대학교 화공생명공학과) ;
  • 김종학 (연세대학교 화공생명공학과)
  • Received : 2015.10.03
  • Accepted : 2015.10.19
  • Published : 2015.10.31

Abstract

In the past few decades, polymeric membrane has played an important role in gas separation applications. For the separation of $CO_2$, one of greenhouse gases, high permselectivity, long-term stability and scale-up are needed. However, conventional polymeric membranes have shown a trade-off relation between permeability and selectivity while inorganic materials are highly permeable but expensive. Mixed matrix membranes (MMMs) combining the advantages of both polymeric and inorganic materials have become a possible breakthrough for the next-generation gas separation membranes. The MMMs could be either symmetric or asymmetric but the latter is more preferred to improve the permeance. Important factors influencing the MMM fabrication include homogeneous distribution of inorganic particles and good interfacial contact between inorganic filler and organic matrix. Recently, metal organic frameworks (MOFs) have received much attention as a new class of porous crystalline materials and a potential candidate for $CO_2$ separation. Zeolitic imidazolate frameworks (ZIFs), a sub-branch of MOFs, are the most widely used in MMMs due to small particle size and appropriate pore size for $CO_2$ separation. One of the major issues associated with the incorporation of porous particles in a polymeric membrane is to control the microstructure of the porous particle materials such as particle size, orientation, and boundary conditions etc. In this review, major challenges surrounding MMMs and the strategies to tackle these challenges are given in detail.

지난 수십 년 동안, 고분자막은 기체 분리 분야에서 큰 역할을 해왔다. 온실가스의 주범인 이산화탄소를 분리하기 위해서는 더 높은 투과선택도와 장수명 및 대면적 등을 요구한다. 하지만 기존 고분자 분리막들은 투과도와 선택도의 역상관 관계 특징을 지니고 있으며, 무기물질은 투과성능이 우수하지만 가격이 비싸다는 단점이 있다. 최근 많은 연구가 진행되어온 혼합 매질 분리막은 고분자와 무기물질의 이점들을 혼합하여 기체 분리막의 차세대로서 큰 이목을 이끌고 있다. 혼합 매질 분리막은 대칭적인 구조 또는 비대칭적인 구조를 가지고 있으며, 투과량을 증가시키기 위해서는 비대칭적인 구조가 바람직하다. 혼합 매질 분리막에서 가장 중요한 변수로는 무기입자의 균일한 분산과 무기물과 고분자 사이의 좋은 계면을 형성하는 것이다. 최근에 새로운 분류의 다공성 결정성 물질인 금속 유기 구조체(MOF)는 이산화탄소 분리용 소재로써 많은 관심을 끌고 있다. MOF의 한 종류 중, zeolitic imidazolate frameworks (ZIF)는 가장 흔하게 사용되는 무기입자이며 이는 입자의 크기를 작게 만들 수 있으며, $CO_2$를 분리하기에 적절한 기공의 크기를 가지고 있기 때문이다. 이 밖에 혼합 매질 분리막에 사용되는 특정 물질들을 적용하기 위해서는 선택도와 크기, 호환성, 안정성 등을 동시에 최적화시켜야 한다. 이와 같이 본 총설에서는, 혼합 매질 분리막에 관련된 주요 연구내용과 이러한 연구를 수행하는 대표적인 전략들을 소개하였다.

Keywords

References

  1. R. W. Baker, "Future directions of membrane gas separation technology", Ind. Eng. Chem. Res., 41, 1393 (2002). https://doi.org/10.1021/ie0108088
  2. J. H. Kim, C. Y. Park, and Y. Lee, "Synthesis of soluble copolyimides using an alicyclic dianhydride and their $CO_2/CH_4$ separation properties", Membr. J., 24, 1 (2014). https://doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.1.1
  3. K. S. Gi and K. T. Beom, "Separation of gases ($H_2$, $N_2$, $CO_2$, $CH_4$) by PEBAX-NaY zeolite composite membranes", Membr. J., 25, 27 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.1.27
  4. P. Bernardo, E. Drioli, and G. Golemme, "Membrane gas separation: A review/state of the art", Ind. Eng. Chem. Res., 48, 4638 (2009). https://doi.org/10.1021/ie8019032
  5. H. Yang, Z. Xu, M. Fan, R. Gupta, R. B. Slimane, A. E. Bland, and I. Wright, "Progess in carbon dioxide separation and capture: A review", J. Environ. Sci., 20, 14 (2008). https://doi.org/10.1016/S1001-0742(08)60002-9
  6. J. M. Lee, M. G. Lee, S. J. Kim, H. C. Koh, and S. Y. Nam, "Characterization of gas permeation properties of polyimide copolymer membranes", Membr. J., 25, 223 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.3.223
  7. L. M. Robeson, "The upper bound revisited", J. Membr. Sci., 320, 390 (2008). https://doi.org/10.1016/j.memsci.2008.04.030
  8. A. Singh-Ghosal and W. J. Koros, "Air separation properties of flat sheet homogeneous pyrolytic carbon membranes", J. Membr. Sci., 174, 177 (2000). https://doi.org/10.1016/S0376-7388(00)00392-6
  9. A. B. Fuertes and T. A. Centeno, "Preparation of supported asymmetric carbon molecular sieve membranes", J. Membr. Sci., 144, 105 (1998). https://doi.org/10.1016/S0376-7388(98)00037-4
  10. A. B. Fuertes and T. A. Centeno, "Preparation of supported carbon molecular sieve membranes", Carbon, 37, 679 (1999). https://doi.org/10.1016/S0008-6223(98)00244-9
  11. Y. K. Kim, J. M. Lee, H. B. Park, and Y. M. Lee, "The gas separation properties of carbon molecular sieve membranes derived from polyimides having carboxylic acid groups", J. Membr. Sci., 235, 139 (2004). https://doi.org/10.1016/j.memsci.2004.02.004
  12. H. B. Park, Y. K. Kim, J. M. Lee, S. Y. Lee, and Y. M. Lee, "Relationship between chemical structure of aromatic polyimides and gas permeation properties of their carbon molecular sieve membranes", J. Membr. Sci., 229, 117 (2004). https://doi.org/10.1016/j.memsci.2003.10.023
  13. P. S. Tin, T.-S. Chung, S. Kawi, and M. D. Guiver, "Novel approaches to fabricate carbon molecular sieve membranes based on chemical modified and solvent treated polyimides", Micropor. Mesopor. Mater., 73, 151 (2004). https://doi.org/10.1016/j.micromeso.2004.05.005
  14. R. M. de Vos and H. Verweij, "High-selectivity, high-flux silica membranes for gas separation", Science, 279, 1710 (1998). https://doi.org/10.1126/science.279.5357.1710
  15. J. Caro, M. Noack, P. Kolsch, and R. Schafer, "Zeolite membranes-state of their development and perspective", Micropor. Mesopor. Mater., 38, 3 (2000). https://doi.org/10.1016/S1387-1811(99)00295-4
  16. D. Q. Vu, W. J. Koros, and S. J. Miller, "Mixed matrix membranes using carbon molecular sieves: I. Preparation and experimental results", J. Membr. Sci., 211, 311 (2003). https://doi.org/10.1016/S0376-7388(02)00429-5
  17. D. Q. Vu, W. J. Koros, and S. J. Miller, "Mixed matrix membranes using carbon molecular sieves: II. Modeling permeation behavior", J. Membr. Sci., 211, 335 (2003). https://doi.org/10.1016/S0376-7388(02)00425-8
  18. H. Vinh-Thang and S. Kaliaguine, "Predictive models for mixed-matrix membrane performance: A review", Chem. Rev., 113, 4980 (2013). https://doi.org/10.1021/cr3003888
  19. P. S. Goh, A. F. Ismail, S. M. Sanip, B. C. Ng, and M. Aziz, "Recent advances of inorganic fillers in mixed matrix membrane for gas separation", Sep. Purif. Technol., 81, 243 (2011). https://doi.org/10.1016/j.seppur.2011.07.042
  20. M. J. C. Ordonez, K. J. Balkus Jr, J. P. Ferraris, and I. H. Musselman, "Molecular sieving realized with ZIF-8/$Matrimid^{(R)}$ mixed-matrix membranes", J. Membr. Sci., 361, 28 (2010). https://doi.org/10.1016/j.memsci.2010.06.017
  21. M. L. Lind, A. K. Ghosh, A. Jawor, X. Huang, W. Hou, Y. Yang, and E. M. V. Hoek, "Influence of zeolite crystal size on zeolite-polyamide thin film nanocomposite membranes", Langmuir, 25, 10139 (2009). https://doi.org/10.1021/la900938x
  22. I. Pinnau and W. J. Koros, "Structures and gas separation properties of asymmetric polysulfone membranes made by dry, wet, and dry/wet phase inversion", J. Appl. Polym. Sci., 43, 1491 (1991). https://doi.org/10.1002/app.1991.070430811
  23. R. Mahajan, R. Burns, M. Schaeffer, and W. J. Koros, "Challenges in forming successful mixed matrix membranes with rigid polymeric materials", J. Appl. Polym. Sci., 86, 881 (2002). https://doi.org/10.1002/app.10998
  24. B.-H. Jeong, E. M. V. Hoek, Y. Yan, A. Subramani, X. Huang, G. Hurwitz, A. K. Ghosh, and A. Jawor, "Challenges in forming successful mixed matrix membranes with rigid polymeric materials", J. Membr. Sci., 294, 1 (2007). https://doi.org/10.1016/j.memsci.2007.02.025
  25. M. A. Aroon, A. F. Ismail, T. Matsuura, and M. M. Montazer-Rahmati, "Performance studies of mixed matrix membranes for gas separation: A review", Sep. Purif. Technol., 75, 229 (2010). https://doi.org/10.1016/j.seppur.2010.08.023
  26. T.-S. Chung, L. Y. Jiang, Y. Li, and S. Kulprathipanja, "Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation", Prog. Polym. Sci., 32, 483 (2007). https://doi.org/10.1016/j.progpolymsci.2007.01.008
  27. R. Mahajan and W. J. Koros, "Factors controlling successful formation of mixed-matrix gas separation materials", Ind. Eng. Chem. Res., 39, 2692 (2000). https://doi.org/10.1021/ie990799r
  28. L. Y. Jiang, T. S. Chung, C. Cao, Z. Huang, and S. Kulprathipanja, "Fundamental understanding of nano-sized zeolite distribution in the formation of the mixed matrix single- and dual-layer asymmetric hollow fiber membranes", J. Membr. Sci., 252, 89 (2005). https://doi.org/10.1016/j.memsci.2004.12.004
  29. T. D. Kusworo, A. F. Ismail, A. Mustafa, and T. Matsuura, "Dependence of membrane morphology and performance on preparation conditions: The shear rate effect in membrane casting", Sep. Purif. Technol., 61, 249 (2008). https://doi.org/10.1016/j.seppur.2007.10.017
  30. M. Das, J. D. Perry, and W. J. Koros, "Gas- transport- property performance of hybrid carbon molecular sieve-polymer materials", Ind. Eng. Chem. Res., 49, 9310 (2010). https://doi.org/10.1021/ie100843r
  31. M.-D. Jia, K.-V. Pleinemann, and R.-D. Behling, "Preparation and characterization of thin-film zeolite- PDMS composite membranes", J. Membr. Sci., 73, 119 (1992). https://doi.org/10.1016/0376-7388(92)80122-Z
  32. T. C. Merkel, B. D. Freeman, R. J. Spontak, Z. He, I. Pinnau, P. Meakin, and A. J. Hill, "Ultrapermeable, reverse-selective nanocomposite membranes", Science, 296, 519 (2002). https://doi.org/10.1126/science.1069580
  33. C. Kong, T. Shintani, and T. Tsuru, "Pre-seeding assisted synthesis of a high performance polyamide- zeolite nanocomposite membrane for water purification", New J. Chem., 34, 2101 (2010). https://doi.org/10.1039/c0nj00581a
  34. A. Car, C. Stropnik, and K.-V. Peinemann, "Hybrid membrane materials with different metal-organic frameworks (MOFs) for gas separation", Desalination, 200, 424 (2006). https://doi.org/10.1016/j.desal.2006.03.390
  35. S. Husain and W. J. Koros, "Mixed matrix hollow fiber membranes made with modified HSSZ-13 zeolite in polyetherimide polymer matrix for gas separation", J. Membr. Sci., 288, 195 (2007). https://doi.org/10.1016/j.memsci.2006.11.016
  36. J. M. Duval, B. Folkers, M. H. V. Mulder, G. Desgrandchamps, and C. A. Smolders, "Adsorbent filled membranes for gas separation. Part 1. Improvement of the gas separation properties of polymeric membranes by incorporation of microporous adsorbents", J. Membr. Sci., 80, 189 (1993). https://doi.org/10.1016/0376-7388(93)85143-K
  37. B. D. Reid, F. A. Ruiz-Trevino, I. H. Musselman, K. J. Balkus, and J. P. Ferraris, "Gas permeability properties of polysulfone membranes containing the mesoporous molecular sieve MCM-41", Chem. Mater., 13, 2366 (2001). https://doi.org/10.1021/cm000931+
  38. B. Zornoza, C. Tellez, and J. Coronas, "Mixed matrix membranes comprising glassy polymers and dispersed mesoporous silica spheres for gas separation", J. Membr. Sci., 368, 100 (2011). https://doi.org/10.1016/j.memsci.2010.11.027
  39. Y. Zhang, I. H. Musselman, J. P. Ferraris, and K. J. Balkus, "Gas permeability properties of mixedmatrix matrimid membranes containing a carbon aerogel: A material with both micropores and mesopores", Ind. Eng. Chem. Res., 47, 2794 (2008). https://doi.org/10.1021/ie0713689
  40. Y. Li, H.-M. Guan, T.-S. Chung, and S. Kulprathipanja, "Effects of novel silane modification of zeolite surface on polymer chain rigidification and partial pore blockage in polyethersulfone (PES)-zeolite A mixed matrix membranes", J. Membr. Sci., 275, 17 (2006). https://doi.org/10.1016/j.memsci.2005.08.015
  41. M. Frycova, P. Sysel, M. Kocirik, L. Brabec, P. Hrabanek, O. Prokopova, B. Bernauer, and A. Zikanova, "Mixed matrix membranes based on 3-aminopropyltriethoxysilane endcapped polyimides and silicalite-1", J. Appl. Polym. Sci., 124, E233 (2012). https://doi.org/10.1002/app.36466
  42. Y. Hudiono, S. Choi, S. Shu, W. J. Koros, M. Tsapatsis, and S. Nair, "Porous layered oxide/ $Nafion^{(R)}$ nanocomposite membranes for direct methanol fuel cell applications", Microporous Mesoporous Mater., 118, 427 (2009). https://doi.org/10.1016/j.micromeso.2008.09.017
  43. Y. C. Hudiono, T. K. Carlisle, J. E. Bara, Y. Zhang, D. L. Gin, and R. D. Noble, "A three-component mixed-matrix membrane with enhanced $CO_2$ separation properties based on zeolites and ionic liquid materials", J. Membr. Sci., 350, 117 (2010). https://doi.org/10.1016/j.memsci.2009.12.018
  44. S. Basu, A. Cano-Odena, and I. F. J. Vankelecom, "Asymmetric $Matrimid^{(R)}$/[$Cu_3(BTC)_2$] mixed-matrix membranes for gas separations", J. Membr. Sci., 362, 478 (2010). https://doi.org/10.1016/j.memsci.2010.07.005
  45. Y. Zhang, I. H. Musselman, J. P. Ferraris, and K. J. Balkus Jr, "Asymmetric $Matrimid^{(R)}$/[$Cu_3(BTC)_2$] mixed-matrix membranes for gas separations", J. Membr. Sci., 313, 170 (2008). https://doi.org/10.1016/j.memsci.2008.01.005
  46. Y. Zhang, K. J. Balkus Jr, I. H. Musselman, and J. P. Ferraris, "Asymmetric $Matrimid^{(R)}$/[$Cu_3(BTC)_2$] mixed-matrix membranes for gas separations", J. Membr. Sci., 325, 28 (2008). https://doi.org/10.1016/j.memsci.2008.04.063
  47. Y. Li, T.-S. Chung, C. Cao, and S. Kulprathipanja, "Asymmetric $Matrimid^{(R)}$/[$Cu_3(BTC)_2$] mixed-matrix membranes for gas separations", J. Membr. Sci., 260, 45 (2005). https://doi.org/10.1016/j.memsci.2005.03.019
  48. E. V. Perez, K. J. Balkus Jr, J. P. Ferraris, and I. H. Musselman, "Mixed-matrix membranes containing MOF-5 for gas separations", J. Membr. Sci., 165, 328 (2009).
  49. S. Ma, D. Sun, X.-S. Wang, and H.-C. Zhou, "A mesh-adjustable molecular sieve for general use in gas separation", Angew. Chem. Int. Ed., 46, 2458 (2007). https://doi.org/10.1002/anie.200604353
  50. L. Pan, K. M. Adams, H. E. Hernandez, X. Wang, C. Zheng, Y. Hattori, and K. Kaneko, "Porous lanthanide- organic frameworks: synthesis, characterization, and unprecedented gas adsorption properties", J. Am. Chem. Soc., 125, 3062 (2003). https://doi.org/10.1021/ja028996w
  51. D. N. Dybtsev, H. Chun, S. H. Yoon, D. Kim, and K. Kim, "Microporous manganese formate: A simple metal-organic porous material with high framework stability and highly selective gas sorption properties", J. Am. Chem. Soc., 126, 32 (2003).
  52. R. Adams, C. Carson, J. Ward, R. Tannenbaum, and W. Koros, "Metal organic framework mixed matrix membranes for gas separations", Micropor. Mesopor. Mater., 131, 13 (2010). https://doi.org/10.1016/j.micromeso.2009.11.035
  53. T. Yang, Y. Xiao, and T.-S. Chung, "Poly-/ metal- benzimidazole nano-composite membranes for hydrogen purification", Energy Environ. Sci., 4, 4171 (2011). https://doi.org/10.1039/c1ee01324f
  54. M. Z. Rong, M. Q. Zhang, Y. X. Zheng, H. M. Zeng, R. Walter, and K. Friedrich, "Structure-property relationships of irradiation grafted nano-inorganic particle filled polypropylene composites", Polymer, 42, 167 (2001). https://doi.org/10.1016/S0032-3861(00)00325-6
  55. M. Q. Zhang, M. Z. Rong, H. B. Zhang, and K. Friedrich, "Mechanical properties of low nano-silica filled high density polyethylene composites", Polym. Eng. Sci., 32, 490 (2003).
  56. Q. Song, S. K. Nataraj, M. V. Roussenova, J. C. Tan, D. J. Hughes, W. Li, P. Bourgoin, M. A. Alam, A. K. Cheetham, S. A. Al-Muhtaseb, and E. Sivaniah, "Zeolite imidazolate frameswork (ZIF-8) based polymer nanocomposite membranes for gas separation", Energy Environ. Sci., 5, 8359 (2012). https://doi.org/10.1039/c2ee21996d
  57. O. G. Nik, X. Y. Chen, and S. Kaliaguine, "Amine-functionalized zeolite FAU/EMT-polyimide mixed matrix membranes for $CO_2/CH_4$ separation", J. Membr. Sci., 379, 468 (2011). https://doi.org/10.1016/j.memsci.2011.06.019
  58. O. G. Nik, X. Y. Chen, and S. Kaliaguine, "Functionalized metal organic framework-polyimide mixed matrix membranes for $CO_2/CH_4$ separation", J. Membr. Sci., 413, 45 (2012).
  59. A. Carne, C. Carbonell, I. Imaz, and D. Maspoch, "Nanoscale metal-organic materials", Chem. Soc. Rev., 40, 291 (2011). https://doi.org/10.1039/C0CS00042F
  60. M. Oh and C. A. Mirkin, "Chemically tailorable colloidal particles from infinite coordination polymers", Nature, 438, 651 (2005). https://doi.org/10.1038/nature04191
  61. J. Cravillon, S. Munzer, S.-J. Lohmeier, A. Feldhoff, K. Huber, and M. Wiebcke, "Rapid toom-temperature synthesis and characterization of nanocrystals of a prototypical zeolitic imidazolate framework", Chem. Mater., 21, 1410 (2009). https://doi.org/10.1021/cm900166h
  62. S. K. Nune, P. K. Thallapally, A. Dohnalkova, C. Wang, J. Liu, and G. J. Exarhos, "Synthesis and properties of nano zeolitic imidazolate frameworks", Chem. Commun., 46, 4878 (2010). https://doi.org/10.1039/c002088e
  63. W. S. Chi, S. J. Kim, S. J. Lee, Y. S. Bae, and J. H. Kim, "Enhanced performance of mixed-matrix membranes through a graft copolymer-directed interface and interaction tuning approach", Chem. Sus. Chem., 8, 650 (2015). https://doi.org/10.1002/cssc.201402677
  64. P. D. C. Dietzel, V. Besikiotis, and R. Blom, "Application of metal-organic frameworks with coordinatively unsaturated metal sites in storage and separation of methane and carbon dioxide", J. Mater. Chem., 19, 7362 (2009). https://doi.org/10.1039/b911242a
  65. L. H. Wee, M. R. Lohe, N. Janssens, S. Kaskel, and J. A. Martens, "Fine tuning of the metal-organic framework $Cu_3(BTC)_2$ HKUST-1 crystal size in the 100 nm to 5 micron range", J. Mater. Chem., 22, 13742 (2012). https://doi.org/10.1039/c2jm31536j
  66. M. Anson, J. Marchese, E. Garis, N. Ochoa, and C. Pagliero, "ABS copolymer-activated carbon mixed matrix membranes for $CO_2/CH_4$ separation", J. Membr. Sci., 243, 19 (2004). https://doi.org/10.1016/j.memsci.2004.05.008
  67. R. Mahajan and W. J. Koros, "Mixed matrix membrane materials with glassy polymers. Part 1", Polym. Eng. Sci., 42, 1420 (2002). https://doi.org/10.1002/pen.11041
  68. S. Li, J. L. Falconer, and R. D. Noble, "SAPO-34 membranes for $CO_2/CH_4$ separation", J. Membr. Sci., 241, 121 (2004). https://doi.org/10.1016/j.memsci.2004.04.027
  69. Z. Zhao, Z. Li, and Y. S. Lin, "Adsorption and diffusion of carbon dioxide on metal-organic framework (MOF-5)", Ind. Eng. Chem. Res., 48, 10015 (2009). https://doi.org/10.1021/ie900665f
  70. Z. Huang, Y. Li, R. Wen, M. May Teoh, and S. Kulprathipanja, "Enhanced gas separation properties by using nanostructured PES-Zeolite 4A mixed matrix membranes", J. Appl. Polym. Sci., 101, 3800 (2006). https://doi.org/10.1002/app.24041
  71. Y. Li, T.-S. Chung, and S. Kulprathipanja, "Novel $Ag^+$-zeolite/polymer mixed matrix membranes with a high $CO_2/CH_4$ selectivity", AIChE J., 53, 610 (2007). https://doi.org/10.1002/aic.11109
  72. M. B. Rao and S. Sircar, "Nanoporous carbon membranes for separation of gas mixtures by selective surface flow", J. Membr. Sci., 85, 253 (1993). https://doi.org/10.1016/0376-7388(93)85279-6
  73. M. B. Rao and S. Sircar, "Performance and pore characterization of nanoporous carbon membranes for gas separation", J. Membr. Sci., 110, 109 (1996). https://doi.org/10.1016/0376-7388(95)00241-3
  74. J. H. Kim and Y. M. Lee, "Gas permeation properties of poly(amide-6-b-ethylene oxide)-silica hybrid membranes", J. Membr. Sci., 193, 209 (2001). https://doi.org/10.1016/S0376-7388(01)00514-2
  75. H. Cong, M. Radosz, B. F. Towler, and Y. Shen, "Polymer-inorganic nanocomposite membranes for gas separation", Sep. Purif. Technol., 55, 281 (2007). https://doi.org/10.1016/j.seppur.2006.12.017
  76. Z. Lai, G. Bonilla, I. Diaz, J. G. Nery, K. Sujaoti, M. A. Amat, E. Kokkoli, O. Terasaki, R. W. Thompson, M. Tsapatsis, and D. G. Vlachos, "Microstructural optimization of a zeolite membrane for organic vapor separation", Science, 300, 456 (2003).
  77. A. F. Ismail and W. Lorna, "Penetrant-induced plasticization phenomenon in glassy polymers for gas separation membrane", Sep. Purif. Technol., 27, 173 (2002). https://doi.org/10.1016/S1383-5866(01)00211-8
  78. G. Dong, H. Li, and V. Chen, "Plasticization mechanisms and effects of thermal annealing of Matrimid hollow fiber membranes for $CO_2$ removal", J. Membr. Sci., 369, 206 (2011). https://doi.org/10.1016/j.memsci.2010.11.064
  79. A. Bos, I. G. M. Punt, and H. Strathmann, "Plasticization-resistant glassy polyimide membranes for $CO_2/CO_4$ separations", Sep. Purif. Technol., 14, 27 (1998). https://doi.org/10.1016/S1383-5866(98)00057-4
  80. M. Wessling, S. Schoeman, T. van den Boomgaard, and C. A. Smolders, "Plasticization of gas separation membranes", Gas Sep. Purif., 5, 222 (1991). https://doi.org/10.1016/0950-4214(91)80028-4
  81. C. A. Scholes, S. Kentish, and G. Stevens, "Effects of minor components in carbon dioxide capture using polymeric gas separation membranes", Sep. Purif. Rev., 38, 1 (2009). https://doi.org/10.1080/15422110802411442
  82. M. Al-Juaied and W. J. Koros, "Performance of natural gas membranes in the presence of heavy hydrocarbons", J. Membr. Sci., 274, 227 (2006). https://doi.org/10.1016/j.memsci.2005.08.013
  83. C. C. Ahn, Y. Ye, B. V. Ratnakumar, C. Witham, J. R. C. Bowman, and B. Fultz, "Hydrogen desorption and adsorption measurements on graphite nanofibers", Appl. Phys. Lett., 73, 3378 (1998). https://doi.org/10.1063/1.122755
  84. R. Ameloot, E. Gobechiya, H. Uji-i, J. A. Martens, J. Hofkens, L. Alaerts, B. F. Sels, and D. E. De Vos, "Direct patterning of oriented metal-organic framework crystals via control over crystallization kinetics in clear precursor solutions", Adv. Mater., 22, 2685 (2010). https://doi.org/10.1002/adma.200903867
  85. J. R. Johnson and W. J. Koros, "Utilization of nanoplatelets in organic-inorganic hybrid separation materials: Separation advantages and formation challenges", J. Taiwan Inst. Chem. Eng., 40, 268 (2009). https://doi.org/10.1016/j.jtice.2009.03.003
  86. J. A. Sheffel and M. Tsapatsis, "A model for the performance of microporous mixed matrix membranes with oriented selective flakes", J. Membr. Sci., 295, 50 (2007). https://doi.org/10.1016/j.memsci.2007.02.034
  87. J. Choi and M. Tsapatsis, "MCM-22/Silica selective flake nanocomposite membranes for hydrogen separations", J. Am. Chem. Soc., 132, 448 (2009).
  88. S. Choi, J. Coronas, E. Jordan, W. Oh, S. Nair, F. Onorato, D. F. Shantz, and M. Tsapatsis, "Layered silicates by swelling of AMH-3 and nanocomposite membranes", Angew. Chem., Int. Ed., 47, 552 (2008). https://doi.org/10.1002/anie.200703440
  89. C. Yang, W. H. Smyrl, and E. L. Cussler, "Flake alignment in composite coatings", J. Membr. Sci., 231, 1 (2004). https://doi.org/10.1016/j.memsci.2003.09.022
  90. R. D. Noble, "Perspectives on mixed matrix membranes", J. Membr. Sci., 378, 393 (2011). https://doi.org/10.1016/j.memsci.2011.05.031
  91. S. Xiong, S. Wang, X. Tang, and Z. Wang, "Four new metal-organic frameworks constructed from $H_2DBTDC-O_2$ ($H_2DBTDC-O_2$ = dibenzothiophene-5, 5'-dioxide-3,7-dicarboxylic acid) ligand with guest-responsive photoluminescence", Cryst. Eng. Comm., 13, 1646 (2011). https://doi.org/10.1039/C0CE00422G
  92. R. Matsuda, R. Kitaura, S. Kitagawa, Y. Kubota, T. C. Kobayashi, S. Horike, and M. Takata, "Guest shape-responsive fitting of porous coordination polymer with shrinkable framework", J. Am. Chem. Soc., 126, 14063 (2004). https://doi.org/10.1021/ja046925m
  93. N. B. Mckeown, P. M. Budd, K. J. Msayib, B. S. Ghanem, H. J. Kingston, C. E. Tattershall, S. Makhseed, K. J. Reynolds, and D. Fritsch, "Polymers of intrinsic microporosity (PIMs): Bridging the void between microporous and polymeric materials", Chem. -Eur. J., 11, 2610 (2005). https://doi.org/10.1002/chem.200400860
  94. J. Ahn, W.-J. Chung, I. Pinnau, J. Song, N. Du, G. P. Robertson, and M. D. Guiver, "Gas transport behavior of mixed-matrix membranes composed of silica nanoparticles in a polymer of intrinsic microporosity (PIM-1)", J. Membr. Sci., 346, 280 (2010). https://doi.org/10.1016/j.memsci.2009.09.047