DOI QR코드

DOI QR Code

Performance Evaluation of Fabric Sensors for Movement-monitoring Smart Clothing: Based on the Experiment on a Dummy

동작 모니터링 스마트 의류를 위한 직물 센서의 성능 평가: 더미 실험을 중심으로

  • Cho, Hyun-Seung (Institute of Symbiotic Life-TECH, Yonsei University) ;
  • Park, Sun-Hyeong (Institute of Symbiotic Life-TECH, Yonsei University) ;
  • Kang, Da-Hye (Department of Clothing & Textiles, College of Human Ecology, Yonsei University) ;
  • Lee, Kang-Hwi (School of Biomedical Engineering, College of Biomedical & Life Science, Konkuk University) ;
  • Kang, Seung-Jin (School of Biomedical Engineering, College of Biomedical & Life Science, Konkuk University) ;
  • Han, Bo-Ram (Department of Physical Education, College of Science Education, Yonsei University) ;
  • Oh, Jung-Hoon (Department of Physical Education, College of Science Education, Yonsei University) ;
  • Lee, Hae-Dong (Department of Physical Education, College of Science Education, Yonsei University) ;
  • Lee, Joo-Hyeon (Department of Clothing & Textiles, College of Human Ecology, Yonsei University) ;
  • Lee, Jeong-Whan (School of Biomedical Engineering, College of Biomedical & Life Science, Konkuk University)
  • 조현승 (연세대학교 심바이오틱라이프텍연구원) ;
  • 박선형 (연세대학교 심바이오틱라이프텍연구원) ;
  • 강다혜 (연세대학교 생활과학대학 의류환경학과) ;
  • 이강휘 (건국대학교 의료생명대학 의학공학부) ;
  • 강승진 (건국대학교 의료생명대학 의학공학부) ;
  • 한보람 (연세대학교 교육과학대학 체육교육학과) ;
  • 오정훈 (연세대학교 교육과학대학 체육교육학과) ;
  • 이해동 (연세대학교 교육과학대학 체육교육학과) ;
  • 이주현 (연세대학교 생활과학대학 의류환경학과) ;
  • 이정환 (건국대학교 의료생명대학 의학공학부)
  • Received : 2015.08.12
  • Accepted : 2015.10.22
  • Published : 2015.12.31

Abstract

TThis study explored the requirement of fabric sensor that can measure the motion of the joint effectively by measuring and analyzing the variation in electric resistance of a sensor in accordance with bending and stretching motion of the arm by the implementation of a motion sensor utilizing conductive fabric. For this purpose, on both sides of two kinds of knitted fabric, namely 'L' fabric and 'W' fabric Single Wall Carbon Nano-Tube(SWCNT) was coated, fabric sensor was developed by finishing them in a variety of ways, and the sensor was attached to the arm band. The fabric sensor consisted of total 48 cases, namely background fabric for coating, the method of sensor attachment, the number of layer of sensors, the length of sensor, and the width of sensor. The performance of fabric motion sensors in terms of a dummy arm, that is, a Con-Trex MJ with 48 arm bands around it was evaluated. For each arm band, a total of 48, fastened around the dummy arm, it was adjusted to repeat the bending and stretching at the frequency : 0.5Hz, ROM : $20^{\circ}{\sim}120^{\circ}$, the voltage was recorded for each case after conducting three sets of repeat measurement for a total of 48 cases. As a result of the experiment, and as a consequences of the evaluation and analysis of the voltage based on the uniformity of the base line of the peak-to-peak voltage(Vp-p), the uniformity of Vp-p within the same set, and the uniformity of the Vp-p among three sets, the fabric sensors that have been configured in SWCNT coated 'L' fabric / welding / two layers / $50{\times}5mm$, $50{\times}10mm$, $100{\times}10mm$, and SWCNT coated 'W' fabric / welding / two layers / $50{\times}10mm$ exhibited the most uniform and stable signal value within 5% of the total variation rate. Through all these results of the experiment, it was confirmed that SWCNT coated fabric was suitable for a sensor that can measure the human limb operation when it was implemented as a fabric sensor in a variety of forms, and the optimal sensor types were identified.

본 연구에서는 전도성 직물을 기반으로 동작 센서로 구현하여 팔의 굽힘, 폄 동작에 따른 센서의 전기저항의 변화를 측정, 분석함으로써 관절 동작을 효과적으로 측정 할 수 있는 직물 센서의 요건을 탐색하였다. 이를 위해 두 가지 편직물인 'L'직물과 'W'직물 양면에 Single Wall Carbon Nano-Tube(SWCNT) 코팅을 한 후 이를 다양한 형태로 후가공하여 직물 센서를 개발하고 암 밴드에 부착하였다. 직물 센서는 코팅용 바탕 직물의 종류(2가지), 센서의 부착 방법(2가지), 센서의 layer 수(2가지), 센서의 길이(3가지), 센서의 너비(2가지)의 총 48개로 구성되었다. Con-Trex MJ에 48개의 암 밴드를 입힌 인체 모형 팔을 대상으로 직물 동작 센서의 성능을 평가하였다. 인체 모형 팔에 입혀진 총 48개의 암 밴드 각각에 대해서 frequency: 0.5Hz, ROM: $20^{\circ}{\sim}120^{\circ}$ 에서 굽힘과 폄 동작을 반복하도록 조정하였고, 48개 각 사례 당 세 세트(set)씩 반복 측정한 전압값을 기록하였다. 전압값을 peak-to-peak voltage(Vp-p)의 base line의 균일성, 동일 세트 내 Vp-p의 균일성, 세 세트 간의 Vp-p의 균일성을 기준으로 평가하고 분석한 결과, SWCNT 코팅된 'L' 직물을 두 겹으로 구성하여 열고정 방식으로 부착한 $50{\times}5mm$, $50{\times}10mm$, $100{\times}10mm$ 크기의 직물 센서와, SWCNT 코팅된 'W' 직물을 두 겹으로 구성하고 열고정 방식으로 부착한 $50{\times}10mm$ 크기의 직물 센서가 전체 변화율 5%이내의 가장 균일하고 안정적인 신호값을 나타내었다. 이상의 연구 결과를 통해 SWCNT 코팅 소재를 다양한 형태로 가공해 직물 센서로 구현했을 때 인체의 사지 동작을 측정할 수 있는 센서로서 적합함을 확인하였고, 최적의 센서 형태를 규명하였다.

Keywords

References

  1. Cho, G. S., Jeong., K. S., Paik, M. J., & Kwun, Y. E. (2011). Performance evaluation of textile-based electrodes and motion sensors for smart clothing. Sensors Journal IEEE, 11(12), 3183-3193. https://doi.org/10.1109/JSEN.2011.2167508
  2. Currie, G., Rafferty F., Duncan, G., Bell, F., & Evans, A. L. (1992). Measurement of gait by accelerometer and walkway: a comparison study, Med. Biol. Eng. Comput., 30, 669-670. https://doi.org/10.1007/BF02446803
  3. Daniel, R., Henk, L. & Per, S. (2013). Xsens MVN:Full 6DOF Human Motion Tracking Using Miniature Inertial Sensors, XSENS TECHNOLOGIES - VERSION APRIL 3, 2013.
  4. Eskofier, B. (2013). Wearable computing systems for recreational and elite sports, Wearable Technologies Conference 2013, Munich.
  5. Hofmann, C. (2012). Wearable sensors and wireless data transmission, Wearable Technologies Congress 2012, Munich.
  6. Kang, D. H., Lee, Y. J., Lee, J. W., & Lee, J. H. (2011). A study on the sleeve-shaped platform of POF-based joint angle sensor for arm movement-monitoring clothing, Journal of the Science of Emotion & Sensibility, 14(2), 221-226.
  7. Kolon Glotech, Inc. (2013). Pressure Sensor System, ISPO 2013, Munich.
  8. Korea Information Society Development Institute (2009). Derive a core competence of IT fusion and activation of industry & IT fusion, policy research 09-72.
  9. Korean Agency for Technology and Standards (2010). Research project report of the sixth 3-dimensional shape measurement of Korean body dimensions.
  10. Lee, J. H., Cho, H. S., & Park, S. H. (2015). Sports industrial technology development projects, workshop 2015, Jeju Island.
  11. Lorenzo, T. (2013). Wearable systems for movement recording in care support, Wearable Technologies Conference 2013, Munich.
  12. Melnykowycz, M. & Clemens, F. (2014). Flexible sensor materials for improved product development, Wearable Technologies Conference 2014. Munich, Germany Jan. 27.
  13. Niazmand, K., Jehle, C., D'Angelo, L. T., & Lueth, T. C. (2010). A new washable low-cost garment for everyday fall detection, Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE, 6377-6380.
  14. Whittle, M. W. (1982). Calibration and performance of a 3-dimensional television system for kinematic analysis. Journal of Biomechanics, 15(3), 185-196. https://doi.org/10.1016/0021-9290(82)90251-2
  15. Yang, J. H. (2015). A design and development of the sportswear supporting piezoelectricity harvesting from the joint movement, doctoral thesis, Yonsei University.
  16. Dunne, L. (2010). Posture-monitoring Vest, Wearable Product Design Center at the University of Minnesota's College of Design. Retrieved from http://faculty.design.umn.edu/dunne/past_projects/
  17. IT동아 편집부(2012). 스마트폰이 건강을 지켜드립니다, it.donga.com, 2012.10.09. Retrieved from http://it.donga.com/11286/
  18. Park, J. H. (2014). '운동량.건강 측정하는 웨어러블 기기'가 뜬다, ChosunBiz.com, 2014.12.17. Retrieved from http://biz.chosun.com/site/data/html_dir/2014/01/07/2014010702870.html