DOI QR코드

DOI QR Code

Effect of Low Magnetic Field on Dose Distribution in the Partial-Breast Irradiation

부분유방 방사선조사 시 저자기장이 선량분포에 미치는 영향

  • Kim, Jung-in (Department of Radiation Oncology, Seoul National University Hospital) ;
  • Park, So-Yeon (Department of Radiation Oncology, Seoul National University Hospital) ;
  • Lee, Yang Hoon (Department of Radiation Oncology, Seoul National University Hospital) ;
  • Shin, Kyung Hwan (Department of Radiation Oncology, Seoul National University Hospital) ;
  • Wu, Hong-Gyun (Department of Radiation Oncology, Seoul National University Hospital) ;
  • Park, Jong Min (Department of Radiation Oncology, Seoul National University Hospital)
  • 김정인 (서울대학교병원 방사선종양학과) ;
  • 박소연 (서울대학교병원 방사선종양학과) ;
  • 이양훈 (서울대학교병원 방사선종양학과) ;
  • 신경환 (서울대학교병원 방사선종양학과) ;
  • 우홍균 (서울대학교병원 방사선종양학과) ;
  • 박종민 (서울대학교병원 방사선종양학과)
  • Received : 2015.12.08
  • Accepted : 2015.12.18
  • Published : 2015.12.31

Abstract

The aim of this study is to investigate the effect of low magnetic field on dose distribution in the partial-breast irradiation (PBI). Eleven patients with an invasive early-stage breast carcinoma were treated prospectively with PBI using 38.5 Gy delivered in 10 fractions using the $ViewRay^{(R)}$ system. For each of the treatment plans, dose distribution was calculated with magnetic field and without magnetic field, and the difference between dose and volume for each organ were evaluated. For planning target volume (PTV), the analysis included the point minimum ($D_{min}$), maximum, mean dose ($D_{mean}$) and volume receiving at least 90% ($V_{90%}$), 95% ($V_{95%}$) and 107% ($V_{107%}$) of the prescribed dose, respectively. For organs at risk (OARs), the ipsilateral lung was analyzed with $D_{mean}$ and the volume receiving 20 Gy ($V_{20\;Gy}$), and the contralateral lung was analyzed with only $D_{mean}$. The heart was analyzed with $D_{mean}$, $D_{max}$, and $V_{20\;Gy}$, and both inner and outer shells were analyzed with the point $D_{min}$, $D_{max}$ and $D_{mean}$, respectively. For PTV, the effect of low magnetic field on dose distribution showed a difference of up to 2% for volume change and 4 Gy for dose. In OARs analysis, the significant effect of the magnetic field was not observed. Despite small deviation values, the average difference of mean dose values showed significant difference (p<0.001), but there was no difference of point minimum dose values in both sehll structures. The largest deviation for the average difference of $D_{max}$ in the outer shell structure was $5.0{\pm}10.5Gy$ (p=0.148). The effect of low magnetic field of 0.35 T on dose deposition by a Co-60 beam was not significantly observed within the body for PBI IMRT plans. The dose deposition was only appreciable outside the body, where a dose build-up due to contaminated electrons generated in the treatment head and scattered electrons formed near the body surface.

이 연구 목적은 부분유방 방사선조사 시 저자기장이 선량분포에 주는 영향을 조사하는 것이다. 11명의 초기 유방암 환자들이 뷰레이 시스템에서 38.5 Gy를 10회의 부분유방 방사선 조사 방법으로 치료를 받았다. 모든 치료계획은 저자기장이 있을 때와 없을 때의 선량분포를 각각 계산하고, 각 구조물에 대하여 선량과 용적의 차이값을 평가하였다. 치료계획용적에 대해서는 평균선량, 최소, 최대 선량 그리고 처방선량의 최소한 90%, 95%, 107%를 조사받는 용적을 각각 분석에 포함하였다. 정상조직장기 중 치료와 동일한 방향 폐는 평균선량, 20 Gy를 받는 용적을 평가하고, 반대방향의 폐는 평균선량만 평가하였다. 심장은 평균선량, 최대선량과 20 Gy를 받는 용적을 각각 평가하였다. 내 외각 껍질구조에 대해서는 평균선량, 최소, 최대 선량을 각각 평가하였다. 치료계획용적의 경우 저자기장에 의한 선량 분포의 영향은 최대 2%의 용적 변화, 4 Gy 선량 변화 차이를 보였다. 정상조직 장기에 대해서는 자기장에 의한 선량 분포의 영향은 발견되지 않았다. 내 외각 껍질구조에서 두 선량분포 계산에서 평균값의 차이는 작지만 평균선량의 차이가 유효하게 나타났다. 최소 선량 분석에서는 내 외각 껍질구조에서 차이가 없었다. 자기장에 의한 선량 분포의 영향은 외각 껍질구조에서 최대선량 값 분석에서 $5.0{\pm}10.5Gy$으로 나타났다. Co-60 빔을 이용한 세기조절 방사선치료계획의 부분유방 방사선조사 치료에서 0.35 T 저자기장에 의한 선량 분포 영향은 인체 내부에서는 크게 발견되지 않았다. 다만 인체 외부에서 선량 증가가 관찰되었고, 이는 치료시스템 헤드에서 발생되는 이차전자와 인체 표면 부근에서 산란된 이차전자가 자기장의 방향으로 이동하면서 선량 분포를 형성하고 있다.

Keywords

References

  1. Beitsch PD, Shaitelman SF, Vicini FA: Accelerated partial breast irradiation. J Surg Oncol. 103(4):362-368 (2011). https://doi.org/10.1002/jso.21785
  2. Alvarez C: Accelerated partial breast irradiation. J Am Coll Surg. 209(6):795-796 (2009).
  3. McIntosh A, Read PW, Khandelwal SR, et al.: Evaluation of coplanar partial left breast irradiation using tomotherapy- based topotherapy. Int J Radiat Oncol Biol Phys. 71(2): 603-610 (2008). https://doi.org/10.1016/j.ijrobp.2008.01.047
  4. Kozak KR, Smith BL, Adams J, et al.: Accelerated partialbreast irradiation using proton beams: initial clinical experience. Int J Radiat Oncol Biol Phys. 66(3):691-698 (2006). https://doi.org/10.1016/j.ijrobp.2006.06.041
  5. Wilder RB, Curcio LD, Khanijou RK, et al.: A Contura catheter offers dosimetric advantages over a MammoSite catheter that increase the applicability of accelerated partial breast irradiation. Brachytherapy. 8(4):373-378 (2009). https://doi.org/10.1016/j.brachy.2009.04.002
  6. Weed DW, Edmundson GK, Vicini FA, et al.: Accelerated partial breast irradiation: a dosimetric comparison of three different techniques. Brachytherapy. 4(2):121-129 (2005). https://doi.org/10.1016/j.brachy.2004.12.005
  7. Stewart AJ, Khan AJ, Devlin PM: Partial breast irradiation: a review of techniques and indications. Br J Radiol. 83(989): 369-378 (2010). https://doi.org/10.1259/bjr/11505970
  8. Mydin AR, Gaffney H, Bergman A, et al.: Does a threefield electron/minitangent photon technique offer dosimetric advantages to a multifield, photon-only technique for accelerated partial breast irradiation?. Am J Clin Oncol. 33(4):336-340 (2010). https://doi.org/10.1097/COC.0b013e3181b0c370
  9. Bourgier C, Taghian A, Marsiglia H: Three-field electron/ minitangent photon technique offer dosimetric advantages to a multifield, photon-only technique for accelerated partial breast irradiation if well implemented. Am J Clin Oncol. 34(6):648 (2011). https://doi.org/10.1097/COC.0b013e31820059a2
  10. Vera R, Trombetta M, Mukhopadhyay ND, et al.: Longterm cosmesis and toxicity following 3-dimensional conformal radiation therapy in the delivery of accelerated partial breast irradiation. Pract Radiat Oncol. 4(3):147-152 (2014). https://doi.org/10.1016/j.prro.2013.07.004
  11. Galland-Girodet S, Pashtan I, MacDonald SM, et al.: Long-term cosmetic outcomes and toxicities of proton beam therapy compared with photon-based 3-dimensional conformal accelerated partial-breast irradiation: a phase 1 trial. Int J Radiat Oncol Biol Phys. 90(3):493-500 (2014). https://doi.org/10.1016/j.ijrobp.2014.04.008
  12. Mutic S, Dempsey JF: The ViewRay system: magnetic resonance- guided and controlled radiotherapy. Semin Radiat Oncol. 24(3):196-199 (2014). https://doi.org/10.1016/j.semradonc.2014.02.008
  13. Rubinstein AE, Liao Z, Melancon AD, et al.: Technical Note: A Monte Carlo study of magnetic-field-induced radiation dose effects in mice. Med Phys. 42(9):5510-5516 (2015). https://doi.org/10.1118/1.4928600
  14. Burke B, Ghila A, Fallone BG, et al.: Radiation induced current in the RF coils of integrated linac-MR systems: the effect of buildup and magnetic field. Med Phys. 39(8):5004-5014 (2012). https://doi.org/10.1118/1.4737097
  15. Kirkby C, Stanescu T, Fallone BG: Magnetic field effects on the energy deposition spectra of MV photon radiation. Phys Med Biol. 54(2):243-257 (2009). https://doi.org/10.1088/0031-9155/54/2/005
  16. Wen Z, Pelc NJ, Nelson WR, et al.: Study of increased radiation when an x-ray tube is placed in a strong magnetic field. Med Phys. 34(2):408-418 (2007) https://doi.org/10.1118/1.2404618
  17. Shen CS: adiation problems in a strong magnetic field. Ann N Y Acad Sci. 257:44-55 (1975) https://doi.org/10.1111/j.1749-6632.1975.tb36075.x
  18. Al-Basheer AK, Sjoden GE, Ghita M: Electron Dose Kernels to Account for Secondary article Transport in Deterministic Simulations. Nucl Technol. 168(3):906-918 (2009) https://doi.org/10.13182/NT09-A9326
  19. Kim JO, Kim JK: ose equivalent per unit fluence near the surface of the ICRU phantom by including the secondary electron transport for photons. Radiat Prot Dosimetry. 83(3):211-219 (1999). https://doi.org/10.1093/oxfordjournals.rpd.a032675
  20. Raaijmakers AJE, Raaymakers BW, Lagendijk JJW: Integrating a MRI scanner with a 6 MV radiotherapy accelerator: dose increase at tissue-air interfaces in a lateral magnetic field due to returning electrons. Phys Med Biol. 50(7):1363-1376 (2005). https://doi.org/10.1088/0031-9155/50/7/002
  21. Esmaeeli AD, Pouladian M, Monfared AS, et al.: Effect of uniform magnetic field on dose distribution in the breast radiotherapy. Int J Radiat Res. 12(2):151-160 (2014).

Cited by

  1. Quality of tri-Co-60 MR-IGRT treatment plans in comparison with VMAT treatment plans for spine SABR vol.90, pp.1070, 2017, https://doi.org/10.1259/bjr.20160652
  2. Treatment plan comparison between Tri-Co-60 magnetic-resonance image-guided radiation therapy and volumetric modulated arc therapy for prostate cancer vol.8, pp.53, 2017, https://doi.org/10.18632/oncotarget.20039
  3. Air-electron stream interactions during magnetic resonance IGRT : Skin irradiation outside the treatment field during accelerated partial breast irradiation vol.194, pp.1, 2015, https://doi.org/10.1007/s00066-017-1212-z
  4. Effect of Low Magnetic Field on Dose Distribution in the SABR Plans for Liver Cancer vol.29, pp.2, 2015, https://doi.org/10.14316/pmp.2018.29.2.47
  5. Assessment of Dose Distributions According to Low Magnetic Field Effect for Prostate SABR vol.44, pp.1, 2015, https://doi.org/10.14407/jrpr.2019.44.1.26