DOI QR코드

DOI QR Code

Feasibility Study for Development of Transit Dosimetry Based Patient Dose Verification System Using the Glass Dosimeter

유리선량계를 이용한 투과선량 기반 환자선량 평가 시스템 개발을 위한 가능성 연구

  • Jeong, Seonghoon (Department of Bio-convergence Engineering, Korea University) ;
  • Yoon, Myonggeun (Department of Bio-convergence Engineering, Korea University) ;
  • Kim, Dong Wook (Department of Radiation Oncology, Kyung Hee University at Gang Dong) ;
  • Chung, Weon Kuu (Department of Radiation Oncology, Kyung Hee University at Gang Dong) ;
  • Chung, Mijoo (Department of Radiation Oncology, Kyung Hee University at Gang Dong) ;
  • Choi, Sang Hyoun (Department of Radiation Oncology, Korea Institute of Radiological and Medical Sciences)
  • 정성훈 (고려대학교 바이오융합공학과) ;
  • 윤명근 (고려대학교 바이오융합공학과) ;
  • 김동욱 (강동경희대학교병원 방사선종양학과) ;
  • 정원규 (강동경희대학교병원 방사선종양학과) ;
  • 정미주 (강동경희대학교병원 방사선종양학과) ;
  • 최상현 (한국방사선의학연구소 방사선종양학과)
  • Received : 2015.12.01
  • Accepted : 2015.12.19
  • Published : 2015.12.31

Abstract

As radiation therapy is one of three major cancer treatment methods, many cancer patients get radiation therapy. To exposure as much radiation to cancer while normal tissues near tumor get little radiation, medical physicists make a radiotherapy plan treatment and perform quality assurance before patient treatment. Despite these efforts, unintended medical accidents can occur by some errors. In order to solve the problem, patient internal dose reconstruction methods by measuring transit dose are suggested. As feasibility study for development of patient dose verification system, inverse square law, percentage depth dose and scatter factor are used to calculate dose in the water-equivalent homogeneous phantom. As a calibration results of ionization chamber and glass dosimeter to transit radiation, signals of glass dosimeter are 0.824 times at 6 MV and 0.736 times at 10 MV compared to dose measured by ionization chamber. Average scatter factor is 1.4 and Mayneord F factor was used to apply percentage depth dose data. When we verified the algorithm using the water-equivalent homogeneous phantom, maximum error was 1.65%.

방사선치료는 수술, 항암치료와 함께 암의 3대 치료방법으로써 많은 암환자들이 방사선치료를 받게 된다. 최대한 많은 방사선을 암에 집중시키고 최대한 적은 방사선을 주변 정상 조직에 가해주기 위해 치료 전 치료계획을 철저히 세우고 품질 관리를 시행하지만 방사선치료가 잘못 시행되어 의도치 않은 방사선이 환자에게 전달되는 의료사고가 발생하기도 한다. 이를 해결하기 위해 환자 내부의 선량을 검증하기 위한 방법을 투과선량 측정을 통한 환자 내부선량의 역추정 방법이 제시되고 있다. 본 연구에서 제시한 투과선량을 이용한 환자선량 계산 방법을 거리역자승법칙, 심부선량백분율, scatter factor를 이용한 방법으로써 실제 환자 선량 평가 가능성에 대해 균질한 물등가 팬텀을 이용한 연구이다. 투과선량에 대한 이온함과 유리선량계의 교정 결과 유리선량계의 신호값이 이온함으로 측정한 선량값에 비해 6 MV에서 0.824, 10 MV에서 0.736배인 것으로 나타났고 scatter factor는 평균적으로 1.4정도인 것으로 확인되었다. 심부선량백분율 데이터를 사용하기 위해 Mayneord F factor를 적용하였으며 위의 정보들을 이용하여 균질한 팬텀에서 알고리즘을 검증한 결과 최대 오차 약 1.65%로 계산이 정확하게 실시됨을 확인하였다.

Keywords

References

  1. Hall EJ, Wuu CS: Radiation-induced second cancers: the impact of 3D-CRT and IMRT. International Journal of Radiation Oncology Biology Physics 56(1):83-88 (2003) https://doi.org/10.1016/S0360-3016(03)00073-7
  2. Kim S, Min BJ, Yoon M, et al: Secondary radiation doses of intensity-modulated radiotherapy and proton beam therapy in patients with lung and liver cancer. Radiotherapy and oncology: Journal of the European Society for Therapeutic Radiology and Oncology 98(3):335-339 (2011) https://doi.org/10.1016/j.radonc.2011.01.018
  3. Kim D, Sung J, Lee H, et al: Estimation of Secondary Scattered Dose from Intensity-modulated Radiotherapy for Liver Cancer Cases, Progress in Medical Physics 24(4): 295-302 https://doi.org/10.14316/pmp.2013.24.4.295
  4. Boellaard R, Essers M, Van Herk M, Mijnheer BJ: New method to obtain the midplane dose using portal in vivo dosimetry. International Journal of Radiation Oncology Biology Physics 41(2):465-474 (1998) https://doi.org/10.1016/S0360-3016(98)00048-0
  5. Kasper LP, Marco K, Sandra Q, Andries GV, Ben JM Heijmen: Transit dosimetry with an electronic portal imaging device(EPID) for 115 prostate cancer patients. International Journal of Radiation Oncology Biology Physics 45(5):1297-1303 (1999) https://doi.org/10.1016/S0360-3016(99)00328-4
  6. Rascal F, Philippe B, Lucie B, Alejandro M: In vivo dose verification from back projection of a transit dose measurement on the central axis of photon beams. Physica Medica 27(1):1-10 (2011) https://doi.org/10.1016/j.ejmp.2010.06.002
  7. S Nijsten, W Elmpt, M Jacobs, et al: A global calibration model for a-Si EPIDs used for transit dosimetry. Medical Physics 34(10):3872-3884 (2007) https://doi.org/10.1118/1.2776244
  8. R Bogaerts, AV Esch, Rita Reymen, D Huyskens: A method to estimate the transit dose on the beam axis for verification of dose delivery with portal images. Radiotherapy and Oncology 54(1):39-46 (2000) https://doi.org/10.1016/S0167-8140(99)00165-6
  9. Cilla S, Meluccio D, Fidanzio A, et al: Initial clinical experience with Epid-based in-vivo dosimetry for VMAT treatments of head-and-neck tumors. Physica Medica (2015)
  10. BJ Mijnheer, P Gonzalez, IO Ruiz, et al: Overview of 3-year experience with large-scale electronic portal imaging device-based 3-dimensional transit dosimetry. Practical Radiation Oncology 5(6):679-687 (2015) https://doi.org/10.1016/j.prro.2015.07.001
  11. LCGG Persoon, M Podesta, L Hoffmann, et al: Is integrated transit planar portal dosimetry able to detect geometric changes in lung cancer patients treated with volumetric modulated arc therapy? Acta Oncologica 54(9):1501-1507 (2015) https://doi.org/10.3109/0284186X.2015.1061213
  12. Khan FM: The Physics of Radiation Therapy. 3rd ed, Williams & Wilkins, Baltimore, MD (2003), pp. 158-177
  13. IAEA TRS-398: Absorbed Dose Determination in External Beam Radiotherapy: An International Code of Practice for Dosimetry based on Standards of Absorbed Dose to Water. International Atomic Energy Agency (2000)

Cited by

  1. 반도체 선량계, 일반 선량계, 유리 선량계를 이용한 입사표면선량 모델 제시에 관한 연구: 몬테카를로 시뮬레이션 기반의 PCXMC 2.0을 통한 유효선량과 발병 위험도의 비교분석을 중심으로 vol.12, pp.2, 2018, https://doi.org/10.7742/jksr.2018.12.2.149