DOI QR코드

DOI QR Code

Cellular Uptake and Cytotoxicity of β-Lactoglobulin Nanoparticles: The Effects of Particle Size and Surface Charge

  • Ha, Ho-Kyung (Department of Animal Bioscience (Institute of Agriculture and Life Science), Gyeongsang National University) ;
  • Kim, Jin Wook (Department of Animal Bioscience (Institute of Agriculture and Life Science), Gyeongsang National University) ;
  • Lee, Mee-Ryung (Department of Food and Nutrition, Daegu University) ;
  • Jun, Woojin (Division of Food and Nutrition, Chonnam National University) ;
  • Lee, Won-Jae (Department of Animal Bioscience (Institute of Agriculture and Life Science), Gyeongsang National University)
  • Received : 2014.09.30
  • Accepted : 2014.11.20
  • Published : 2015.03.01

Abstract

It is necessary to understand the cellular uptake and cytotoxicity of food-grade delivery systems, such as ${\beta}$-lactoglobulin (${\beta}$-lg) nanoparticles, for the application of bioactive compounds to functional foods. The objectives of this study were to investigate the relationships between the physicochemical properties of ${\beta}$-lg nanoparticles, such as particle size and zeta-potential value, and their cellular uptakes and cytotoxicity in Caco-2 cells. Physicochemical properties of ${\beta}$-lg nanoparticles were evaluated using particle size analyzer. Flow cytometry and confocal laser scanning microscopy were used to investigate cellular uptake and cytotoxicity of ${\beta}$-lg nanoparticles. The ${\beta}$-lg nanoparticles with various particle sizes (98 to 192 nm) and zeta-potential values (-14.8 to -17.6 mV) were successfully formed. A decrease in heating temperature from $70^{\circ}C$ to $60^{\circ}C$ resulted in a decrease in the particle size and an increase in the zeta-potential value of ${\beta}$-lg nanoparticles. Non-cytotoxicity was observed in Caco-2 cells treated with ${\beta}$-lg nanoparticles. There was an increase in cellular uptake of ${\beta}$-lg nanoparticles with a decrease in particle size and an increase in zeta-potential value. Cellular uptake ${\beta}$-lg nanoparticles was negatively correlated with particle size and positively correlated with zeta-potential value. Therefore, these results suggest that the particle size and zeta-potential value of ${\beta}$-lg nanoparticles play an important role in the cellular uptake. The ${\beta}$-lg nanoparticles can be used as a delivery system in foods due to its high cellular uptake and non-cytotoxicity.

Keywords

References

  1. Chen, L. and M. Subirade. 2005. Chitosan/${\beta}$-lactoglobulin core-shell nanoparticles as nutraceutical carriers. Biomaterials 26:6041-6053. https://doi.org/10.1016/j.biomaterials.2005.03.011
  2. Chen, L., G. E. Remondetto, and M. Subirade. 2006. Food proteinbased materials as nutraceutical delivery systems. Trends Food Sci. Technol. 17:272-283. https://doi.org/10.1016/j.tifs.2005.12.011
  3. Cho, E. C., J. Xie, P. A. Wurm, and Y. Xia. 2009. Understanding the role of surface charges in cellular adsorption versus internalization by selectively removing gold nanoparticles on the cell surface with a $I_2$/KI etchant. Nano Lett. 9:1080-1084. https://doi.org/10.1021/nl803487r
  4. Cockburn, A., R. Bradford, N. Buck, A. Constable, G. Edwards, B. Haber, P. Hepburn, J. Howlett, F. Kampers, C. Klein, M. Radomski, H. Stamm, S. Wijnhoven, and T. Wildemann. 2012. Approaches to the safety assessment of engineered nanomaterials (ENM) in food. Food Chem. Toxicol. 50:2224-2242. https://doi.org/10.1016/j.fct.2011.12.029
  5. Ha, H. K., J. W. Kim, M.-R. Lee, and W.-J. Lee. 2013. Formation and characterization of quercetin-loaded chitosan oligosaccharide/${\beta}$-lactogloublin nanoparticle. Food Res. Int. 52:82-90. https://doi.org/10.1016/j.foodres.2013.02.021
  6. He, C., Y. Hu, L. Yin, C. Tang, and C. Yin. 2010. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials 31:3657-3666. https://doi.org/10.1016/j.biomaterials.2010.01.065
  7. Hu, B., Y. Ting, X. Zeng, and Q. Huang. 2012. Cellular uptake and cytotoxicity of chitosan-caseinophosphopeptides nanocomplexes loaded with epigallocatechin gallate. Carbohydr. Polym. 89:362-370. https://doi.org/10.1016/j.carbpol.2012.03.015
  8. Iversen T. G., T. Skotland, and K. Sandvig. 2011. Endocytosis and intracellular transport of nanoparticles: Present knowledge and need for future studies. Nano Today 6:176-185. https://doi.org/10.1016/j.nantod.2011.02.003
  9. Kumari, A. and S. K. Yadav. 2011. Cellular interactions of therapeutically delivered nanoparticles. Expert Opin. Drug Deliv. 8:141-151. https://doi.org/10.1517/17425247.2011.547934
  10. Lee, M. R., G.-W. Nam, H.-N. Choi, H.-S. Yun, S.-H. Kim, S.-K. You, D.-J. Park, and W.-J. Lee. 2008. Structure and chemical properties of beta-lactoglobulin nanoparticles. J. Agric. Life Sci. 42:31-36.
  11. Lee, M. R., H.-N. Choi, H.-K. Ha, and W.-J. Lee. 2013. Production and characterization of beta-lactoglobulin/alginate nanoemulsion containing coenzyme $Q_{10}$: Impact of heat treatment and alginate concentrate. Korean J. Food Sci. Anim. 33:67-74. https://doi.org/10.5851/kosfa.2013.33.1.67
  12. Livney, Y. D. 2010. Milk proteins as vehicles for bioactives. Curr. Opin. Colloid. Interface Sci. 15:73-83. https://doi.org/10.1016/j.cocis.2009.11.002
  13. Mansouri, S., Y. Cuie, F. Winnik, Q. Shi, P. Lavigne, M. Benderdour, E. Beaumont, and J. C. Fernandes. 2006. Characterization of folate-chitosan-DNA nanoparticles for gene therapy. Biomaterials 27:2060-2065. https://doi.org/10.1016/j.biomaterials.2005.09.020
  14. Napierska, D., L. C. J. Thomassen, V. Rabolli, D. Lison, L. Gonzalez, M. Kirsch-Volders, J. A. Martens, and P. H. Hoet. 2009. Size-dependent cytotoxicity of monodisperse silica nanoparticles in human endothelial cells. Small 5:846-853. https://doi.org/10.1002/smll.200800461
  15. Powell, J. J., N. Faria, E. Thomas-McKay, and L. C. Pele. 2010. Origin and fate of dietary nanoparticles and microparticles in the gastrointestinal tract. J. Autoimmun. 34:J226-J233. https://doi.org/10.1016/j.jaut.2009.11.006
  16. Pushpanathan, M., J. Rajendhran, S. Jayashree, B. Sundarakrishnan, S. Jayachandran, and P. Gunasekaran. 2012. Direct cell penetration of the antifungal peptide, MMGP1, in Canadida albicans. J. Pept. Sci. 18:657-660. https://doi.org/10.1002/psc.2445
  17. Russell, P., D. Hewish, T. Carter, K. Sterling-Levis, K. Ow, M. Hattarki, L. Doughty, R. Guthrie, D. Shapira, P. L. Molloy, J. A. Werkmeister, and A. A. Kortt. 2004. Cytotoxic properties of immunoconjugates containing melittin-like peptide 101 against prostate cancer: in vitro and in vivo studies. Cancer Immunol. Immunother. 53:411-421. https://doi.org/10.1007/s00262-003-0457-9
  18. SAS Institute Inc. 2003. SAS User's Guide: version 9.1, Cary, NC, USA.
  19. Schmitt, C., C. Bovay, A. M. Vuilliomenet, M. Rouvet, L. Bovetto, R. Barbar, and C. Sanchez. 2009. Multiscale characterization of individualized ${\beta}$-lactoglobulin microgels formed upon heat treatment under narrow pH range conditions. Langmuir 25:7899-7909. https://doi.org/10.1021/la900501n
  20. Verma, A. and F. Stellacci. 2010. Effect of surface properties on nanoparticle-cell interactions. Small 6:12-21. https://doi.org/10.1002/smll.200901158
  21. Win, K. Y. and S.-S. Feng. 2005. Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials 26:2713-2722. https://doi.org/10.1016/j.biomaterials.2004.07.050
  22. Yin, H., H. P. Too, and G. M. Chow. 2005. The effects of particle size and surface coating on the cytotoxicity of nickel ferrite. Biomaterials. 26:5818-5826. https://doi.org/10.1016/j.biomaterials.2005.02.036
  23. Yoo, J. W., N. Doshi, and S. Mitragotri. 2011. Adaptive micro and nanoparticles: Temporal control over carrier properties to facilitate drug delivery. Adv. Drug Deliv. Rev. 63:1247-1256. https://doi.org/10.1016/j.addr.2011.05.004
  24. Zhang, J., X. G. Chen, W. B. Peng, and C. S. Liu. 2008. Uptake of oleoyl-chitosan nanoparticles by A549 cells. Nanomedicine 4:208-214. https://doi.org/10.1016/j.nano.2008.03.006
  25. Zimet, P. and Y. D. Livney. 2009. Beta-lactoglobulin and its nanocomplexes with pectin as vehicles for ${\omega}$-3 polyunsaturated fatty acids. Food Hydrocoll. 23:1120-1126. https://doi.org/10.1016/j.foodhyd.2008.10.008

Cited by

  1. Resveratrol-loaded Nanoparticles Induce Antioxidant Activity against Oxidative Stress vol.29, pp.2, 2015, https://doi.org/10.5713/ajas.15.0774
  2. Synthesis and characterization of calcium-induced peanut protein isolate nanoparticles vol.7, pp.84, 2017, https://doi.org/10.1039/C7RA07987G
  3. A Smart Paclitaxel-Disulfiram Nanococrystals for Efficient MDR Reversal and Enhanced Apoptosis vol.35, pp.4, 2018, https://doi.org/10.1007/s11095-018-2370-0
  4. Development of Two-Step Temperature Process to Modulate the Physicochemical Properties of β-lactoglobulin Nanoparticles vol.37, pp.1, 2015, https://doi.org/10.5851/kosfa.2017.37.1.123
  5. 산양유 단백질 분해물/키토올리고당 나노 전달체 제조 및 물리화학적 특성연구 vol.35, pp.3, 2015, https://doi.org/10.22424/jmsb.2017.35.3.208
  6. Entrapment of Ellagic Acid in Dairy Protein-Based Nanoparticles vol.36, pp.2, 2015, https://doi.org/10.22424/jmsb.2018.36.2.121
  7. 케이신 포스포펩티드/키토올리고당 나노 복합체 형성과 특성 연구 vol.36, pp.3, 2015, https://doi.org/10.22424/jmsb.2018.36.3.164
  8. 식품 소재를 이용한 나노전달체의 제조 및 유식품 적용에 관한 고찰 vol.36, pp.4, 2015, https://doi.org/10.22424/jmsb.2018.36.4.187
  9. Interactions between β-Lactoglobulin and 3,3′-Diindolylmethane in Model System vol.24, pp.11, 2015, https://doi.org/10.3390/molecules24112151
  10. Evaluation of plasmid DNA stability against ultrasonic shear stress and its in vitro delivery efficiency using ionic liquid [Bmim][PF6] vol.9, pp.50, 2015, https://doi.org/10.1039/c9ra03414e
  11. Manufacture and Physicochemical Properties of Chitosan Oligosaccharide/A2 β-Casein Nano-Delivery System Entrapped with Resveratrol vol.39, pp.5, 2015, https://doi.org/10.5851/kosfa.2019.e74
  12. Development and Characterization of Whey Protein-Based Nano-Delivery Systems: A Review vol.24, pp.18, 2015, https://doi.org/10.3390/molecules24183254
  13. Bioinspired Zinc Oxide Nanoparticles Using Lycopersicon esculentum for Antimicrobial and Anticancer Applications vol.30, pp.6, 2015, https://doi.org/10.1007/s10876-019-01590-z
  14. Characterisation of 2-HP-β-cyclodextrin-PLGA nanoparticle complexes for potential use as ocular drug delivery vehicles vol.47, pp.1, 2015, https://doi.org/10.1080/21691401.2019.1683567
  15. PLGA Nanoparticles for the Intraperitoneal Administration of CBD in the Treatment of Ovarian Cancer: In Vitro and In Ovo Assessment vol.12, pp.5, 2015, https://doi.org/10.3390/pharmaceutics12050439
  16. In vitro gastrointestinal digestion and cytotoxic effect of ovalbumin-conjugated linoleic acid nanocomplexes vol.137, pp.None, 2020, https://doi.org/10.1016/j.foodres.2020.109381
  17. Site Correlations, Capacitance, and Polarizability From Protein Protonation Fluctuations vol.125, pp.46, 2015, https://doi.org/10.1021/acs.jpcb.1c08200