DOI QR코드

DOI QR Code

Study on Methanol Conversion Efficiency and Mass Transfer of Steam-Methanol Reforming on Flow Rate Variation in Curved Channel

곡유로 채널을 가지는 수증기-메탄올 개질기에서 유량 변화에 따른 메탄올 전환율 및 물질 전달에 관한 연구

  • Jang, Hyun (Graduate school of Mechanical Engineering, Gyeongsang Nat'l Univ) ;
  • Park, In Sung (Graduate school of Mechanical Engineering, Gyeongsang Nat'l Univ) ;
  • Suh, Jeong Se (School of Mechanical Engineering, Gyeongsang Nat'l Univ. & ERI)
  • 장현 (경상대학교 기계공학부) ;
  • 박인성 (경상대학교 기계공학부) ;
  • 서정세 (경상대학교 기계공학부&공학연구원)
  • Received : 2014.10.31
  • Accepted : 2014.12.30
  • Published : 2015.03.01

Abstract

In this study, numerical analysis of curved channel steam-methanol reformer was conducted using the computational fluid dynamics (CFD) commercial code STAR-CCM. A pre-numerical analysis of reference model with a cylindrical channel reactor was performed to validate the combustion model of the CFD commercial code. The result of advance validation was in agreement with reference model over 95%. After completing the validation, a curved channel reactor was designed to determine the effects of shape and length of flow path on methanol conversion efficiency and generation of hydrogen. Numerical analysis of the curved-channel reformer was conducted under various flow rate ($10/15/20{\mu}l/min$). As a result, the characteristics of flow and mass transfer were confirmed in the cylindrical channel and curved channel reactor, and useful information about methanol conversion efficiency and hydrogen generation was obtained for various flow rate.

본 연구에서는 전산유체역학 상용 코드를 이용하여 곡유로 채널형 수소 개질기에 대한 수치 해석적 연구를 수행하였다. 상용코드에서 제공하는 연소모델의 사전 검증을 위하여 원통 채널형 개질기 형를 가지는 선행연구모델(23)에 대한 수치해석을 선행하여 수행하였고, 95% 이상 일치하는 결과를 얻을 수 있었다. 선행연구모델의 수치해석을 통해 연소모델에 대한 해석 타당성검증이 완료된 후, 반응기 형태 변화가 메탄올 전환율과 수소생성에 미치는 영향을 파악하여 기존보다 유로의 길이가 증가한 곡유로 채널형 개질기를 설계하고, 유량조건($10/15/20{\mu}l/min$)을 변수로 수치해석을 수행하였다. 그 결과 원통 채널형 개질기와 곡유로 채널형 개질기에서 발생하는 유동 특성 및 물질전달 특성을 파악할 수 있었고, 그리고 유량에 따른 메탄올 전환율 및 수소 생성에 관한 유용한 정보를 얻을 수 있었다.

Keywords

References

  1. Ghenciu, A.F., 2002, "Review of Fuel Processing Catalysts for Hydrogen Production in PEM Fuel Cell Systems," Curr. Opin. Solid State Mater. Sci. 6, pp. 389-399 https://doi.org/10.1016/S1359-0286(02)00108-0
  2. Brown, L.F., 2001, "A Comparative Study of Fuels for On-board Hydrogen Production for Fuel-cell-powered Automobiles," Int. J. Hydrogen Energy 26, pp. 381-397. https://doi.org/10.1016/S0360-3199(00)00092-6
  3. Amphlett, J.C., Creber, K.A.M., Davis, J.M., Mann, R.F., Peppley, B.A. and Stokes, D.M., 1994, "Hydrogen-production by Steam Reforming of Methanol for Polymer Electrolyte Fuel-cells," Int. J. Hydrogen Energy 19, pp. 131-137. https://doi.org/10.1016/0360-3199(94)90117-1
  4. Peppley, B.A., Amphlett, J.C., Kearns, L.M. and Mann, R.F., 1999, "Methanol-steam Reforming on Cu/ZnO/$Al_2O_3$ - Part 1: The Reaction Network," Appl. Catal. 179, pp. 21-29. https://doi.org/10.1016/S0926-860X(98)00298-1
  5. Peppley, B.A., Amphlett, J.C., Kearns, L.M. and Mann, R.F., 1999, "Methanol-steam Reforming on Cu/ZnO/$Al_2O_3$ Catalysts - Part 2: A Comprehensive Kinetic Model," Appl. Catal. A-Gen.179, pp. 31-39. https://doi.org/10.1016/S0926-860X(98)00299-3
  6. Agrell, J., Birgersson, H. and Boutonnet, M., 2002, "Steam Reforming of Methanol Over a Cu/ZnO/$Al_2O_3$ Catalyst: A Kinetic Analysis and Strategies for Suppression of CO Formation," J. Power Sources 106, pp. 249-257. https://doi.org/10.1016/S0378-7753(01)01027-8
  7. Lee, J.K., Ko, J.B. and Kim, D.H., 2004, "Methanol Steam Reforming Over Cu/ZnO/$Al_2O_3$ Catalyst: Kinetics and Effectiveness Factor," Appl. Catal. A-Gen. 278, pp. 25-35. https://doi.org/10.1016/j.apcata.2004.09.022
  8. Choi, Y.T. and Stenger, H.G., 2005, "Kinetics, Simulation and Optimization of Methanol Steam Reformer for Fuel Cell Applications," J. Power Sources 142, pp. 81-91. https://doi.org/10.1016/j.jpowsour.2004.08.058
  9. Park, H.G., Lee, M.T., Hsu, F.K., Grigoropoulos, C.P. and Grief, R., 2004, "Transport in a Methanol Steam Reformer as the Fuel Processor for Fuel Cell Systems," Proc. IMECE 2004, pp. 1-7.
  10. Karim, A., Bravo, J. and Datye, A., 2005, "Nonisothermality in Packed Bed Reactors for Steam Reforming of Methanol," Appl. Catal. A: Gen. 282, pp. 101-109. https://doi.org/10.1016/j.apcata.2004.12.006
  11. Park, H.G., Malen, J.A., Piggott, W.T., Morse, J.D., Grief, R., Grigoropoulos, C.P., Havstad, M.A. and Upadhye, R., 2006, "Methanol Steam Reformer on a Silicon Wafer," J. Microelectromech. Syst. 15, pp. 976-985. https://doi.org/10.1109/JMEMS.2006.878888
  12. Yuan, J., Ren, F. and Sunden, B., 2007, "Analysis of Chemical-reaction-coupled Mass and Heat Transport Phenomena in a Methane Reformer Duct for PEMFC," Int. J. Heat Mass Transfer 50, pp. 687-701. https://doi.org/10.1016/j.ijheatmasstransfer.2006.07.005
  13. Lee, M.T., Grief, R., Grigoropoulos, C.P., Park, H.G. and Hsu, F.K., 2007, "Transport in Packed-bed and Wall-coated Steam-methanol Reformers," J. Power Sources 166, pp. 194-201. https://doi.org/10.1016/j.jpowsour.2007.01.007
  14. Schmidt, L.D., 2005, "The Engineering of Chemical Reactions," Oxford University Press, New York.
  15. Hill, C.G., 1977, "An Introduction to Chemical Engineering Kinetics and Reactor Design," John Wiley and Sons.
  16. Mills, A.F., 2001, Mass Transfer, Prentice Hall, Upper Saddle River, N.J..
  17. Mills, A.F., 1999, Heat Transfer, Prentice Hall, Upper Saddle River, N.J..
  18. Wilke, C.R., 1950, "A Viscosity Equation for Gas Mixtures," J. Chem. Phys. 18, pp. 517-519. https://doi.org/10.1063/1.1747673
  19. Nield, D.A. and Bejan, A., 2006, "Convection in Porous Media," Springer Science-Business Media, New York.
  20. Vargaftik, N.B., 1975, Tables of Thermophysical Properties of Liquids and Gases, McGraw-Hill, New York.
  21. Incropera, F.P., Dewitt, D.P., 2002, Fundamentals of Heat and Mass Transfer, John Wiley and Sons.
  22. Touloukian, Y.S., 1970, Thermal Conductivity: Nonmetallic Solids, IFI/Plenum, New York.
  23. Suh, J.S., Lee, M.T., Grief, R. and Grigoropoulos, C.P., 2007, "A Study of Steam Methanol Reforming in a Microreactor," J. Power Sources, Vol. 173, pp.458-466. https://doi.org/10.1016/j.jpowsour.2007.04.038
  24. Suh, J.S., Lee, M.T., Grief, R. and Grigoropoulos, C.P., 2008, "Transport Phenomena in a Steam Methanol Reforming Microreactor with Internal Heating," Int. J. Hydrogen Energy, in press.
  25. Karki, K.C. and Patankar, S.V., 1988, "Calculation Procedure for Viscous Incompressible Flows in Complex Geometries," Numerical Heat Transfer, Vol. 14, pp. 295-307.
  26. Patankar, S.V., 1980, Numerical Heat Transfer and Fluid Flow, Hemisphere,Washington, DC.
  27. Liao, C. and Erickson, P.A., 2008, "Characteristic Time as a Descriptive Parameter in Steam Reformation Hydrogen Production Processes," International Journal of Hydrogen Energy pp.1652-1660.

Cited by

  1. A Numerical Study on Mass Transfer and Methanol Conversion Efficiency According to Porosity and Temperature Change of Curved Channel Methanol-Steam Reformer vol.40, pp.11, 2016, https://doi.org/10.3795/KSME-B.2016.40.11.745
  2. Study on Methanol Conversion Efficiency of Steam-Methanol Reforming on Pipe Shape and Flow Rate Variation in Curved Channel vol.40, pp.3, 2016, https://doi.org/10.3795/KSME-B.2016.40.3.173