DOI QR코드

DOI QR Code

Augmenting Plant Immune Responses and Biological Control by Microbial Determinants

새로운 생물적 방제 전략: 미생물 인자 유래 식물면역 유도

  • Lee, Sang Moo (Molecular Phytobacteriology Laboratory, Korea Research Institute of Bioscience and Biotechnology, Biosystems and Bioengineering Program, University of Science and Technology) ;
  • Chung, Joon-hui (Molecular Phytobacteriology Laboratory, Korea Research Institute of Bioscience and Biotechnology, Biosystems and Bioengineering Program, University of Science and Technology) ;
  • Ryu, Choong-Min (Molecular Phytobacteriology Laboratory, Korea Research Institute of Bioscience and Biotechnology, Biosystems and Bioengineering Program, University of Science and Technology)
  • 이상무 (한국생명공학연구원 분자식물세균실험실, 과학기술연합대학원대학교 시스템생명공학전공) ;
  • 정준휘 (한국생명공학연구원 분자식물세균실험실, 과학기술연합대학원대학교 시스템생명공학전공) ;
  • 류충민 (한국생명공학연구원 분자식물세균실험실, 과학기술연합대학원대학교 시스템생명공학전공)
  • Received : 2015.08.10
  • Accepted : 2015.08.24
  • Published : 2015.09.30

Abstract

Plant have developed sophisticated defence mechanisms against microbial pathogens. The recent accumulated information allow us to understand the nature of plant immune responses followed by recognition of microbial factors/determinants through cutting-edge genomics and multi-omics techniques. However, the practical approaches to sustain plant health using enhancement of plant immunity is yet to be fully appreciated. Here, we overviewed the general concept and representative examples on the plant immunity. The fungal, bacterial, and viral determinants that was previously reported as the triggers of plant immune responses are introduced and described as the potential protocol of biological control. Specifically, the role of chitin, glucan, lipopolysaccharides/extracellular polysaccharides, microbe/pathogen-associated molecular pattern, antibiotics, mimic-phytohormones, N-acyl homoserine lactone, harpin, vitamins, and volatile organic compounds are considered. We hope that this review stimulates scientific community and farmers to broaden their knowledge on the microbial determinant-based biological control and to apply the technology on the integrated pest management program.

식물은 다양한 병원성 미생물에 대하여 효과적인 방어 기제를 발전시켜 왔다. 최근 유전체와 다중 오믹스 기술의 발전은 우리에게 미생물 인자에 의한 식물 면역을 폭넓게 이해할 수 있는 단초를 제공해 주었다. 하지만 아직까지는 이러한 기술을 병 방제 전략에 이용한 적은 많지 않다. 그래서 본 리뷰에서 식물 면역의 기본 개념을 소개하고 최근 얻어진 결과들을 소개하였다. 덧붙여 이미 논문에서 발표된 진균, 세균, 바이러스 유래 결정인자에 의한 생물적 방제 가능한 방법에 대해 기술하였다. 특히 미생물 결정인자인 chitin, glucan, LPS/EPS, 미생물분자패턴, 항생제, 식물유사호르몬, AHLs, harpin, 비타민, 휘발성물질에 대한 결과를 자세하게 기술하였다. 이 리뷰를 통하여 많은 과학자들과 농민들이 미생물 결정인자 기반의 생물적 방제에 대한 지식이 폭넓어지고, 다양한 미생물 결정 인자가 앞으로 농업현장의 종합적인 병방제 전략의 하나로 자리매김하기를 바란다.

Keywords

References

  1. Agrios, G. 2004. Plant pathology. 5th ed., pp. 159-160, 21, 240-241. Elsevier Academic Press, Burlington.
  2. Ahmed, S. A., Sanchez, C. P. and Candela, M. E. 2000. Evaluation of induction of systemic resistance in pepper plants (Capsicum annuum) using Trichoderma harzianum and its relation with capsidiol accumulation. Eur. J. Plant Pathol. 106: 817-824. https://doi.org/10.1023/A:1008780022925
  3. Ahn, I. P., Kim, S. and Lee, Y. H. 2005. Vitamin B1 functions as an activator of plant disease resistance. Plant Physiol. 138: 1505-1515. https://doi.org/10.1104/pp.104.058693
  4. Ahn, I. P., Kim, S., Lee, Y. H. and Suh, S. C. 2007. Vitamin B1-induced priming is dependent on hydrogen peroxide and the NPR1 gene in Arabidopsis. Plant Physiol. 143: 838-848.
  5. Akira, S. and Takeda, K. 2004. Toll-like receptor signalling. Nat. Rev. Immunol. 4: 499-511. https://doi.org/10.1038/nri1391
  6. An, C. and Mou, Z. 2011. Salicylic acid and its function in plant immunity. J. Integr. Plant Biol. 53: 412-428. https://doi.org/10.1111/j.1744-7909.2011.01043.x
  7. Anderson, J. P., Lichtenzveig, J., Gleason, C., Oliver, R. P. and Singh, K. B. 2010. The B-3 ethylene response factor MtERF1-1 mediates resistance to a subset of root pathogens in Medicago truncatula without adversely affecting symbiosis with rhizobia. Plant Physiol. 154: 861-873. https://doi.org/10.1104/pp.110.163949
  8. Arlat, M., Van Gijsegem, F., Huet, J. C., Pernollet, J. C. and Boucher, C. A. 1994. PopA1, a protein which induces a hypersensitivity-like response on specific Petunia genotypes, is secreted via the Hrp pathway of Pseudomonas solanacearum. EMBO J. 13: 543-553.
  9. Ausubel, F. M. 2005. Are innate immune signaling pathways in plants and animals conserved? Nat. Immunol. 6: 973-979. https://doi.org/10.1038/ni1253
  10. Ayers, A. R., Ebel, J., Finelli, F., Berger, N. and Albersheim, P. 1976. Host-pathogen interactions: IX. Quantitative assays of elicitor activity and characterization of the elicitor present in the extracellular medium of cultures of Phytophthora megasperma var. sojae. Plant Physiol. 57: 751-759. https://doi.org/10.1104/pp.57.5.751
  11. Azami-Sardooei, Z., Franca, S. C., De Vleesschauwer, D. and Hofte, M. 2010. Riboflavin induces resistance against Botrytis cinerea in bean, but not in tomato, by priming for a hydrogen peroxidefueled resistance response. Physiol. Mol. Plant Pathol. 75: 23-29. https://doi.org/10.1016/j.pmpp.2010.08.001
  12. Bakker, P. A., Pieterse, C. M. and van Loon, L. C. 2007. Induced systemic resistance by fluorescent Pseudomonas spp. Phytopathology 97: 239-243. https://doi.org/10.1094/PHYTO-97-2-0239
  13. Balbi, V. and Devoto, A. 2008. Jasmonate signalling network in Arabidopsis thaliana: crucial regulatory nodes and new physiological scenarios. New Phytol. 177: 301-318.
  14. Bashan, B. and Cohen, Y. 1982. Tobacco necrosis virus induces systemic resistance in cucumbers. Physiol. Plant Pathol. 23: 137-144.
  15. Basse, C. W., Fath, A. and Boller, T. 1993. High affinity binding of a glycopeptide elicitor to tomato cells and microsomal membranes and displacement by specific glycan suppressors. J. Biol. Chem. 268: 14724-14731.
  16. Bauer, D. W., Wei, Z. M., Beer, S. V. and Collmer, A. 1995. Erwinia chrysanthemi harpinEch: an elicitor of the hypersensitive response that contributes to soft-rot pathogenesis. Mol. Plant-Microbe Interact. 8: 484-491. https://doi.org/10.1094/MPMI-8-0484
  17. Baureithel, K., Felix, G. and Boller, T. 1994. Specific, high affinity binding of chitin fragments to tomato cells and membranes. Competitive inhibition of binding by derivatives of chitooligosaccharides and a Nod factor of Rhizobium. J. Biol. Chem. 269: 17931-17938.
  18. Bazzini, A. A., Asurmendi, S., Hopp, H. E. and Beachy, R. N. 2006. Tobacco mosaic virus (TMV) and Potato virus X (PVX) coat proteins confer heterologous interference to PVX and TMV infection, respectively. J. Gen. Virol. 87: 1005-1012. https://doi.org/10.1099/vir.0.81396-0
  19. Benhamou, N., Garand, C. and Goulet, A. 2002. Ability of nonpathogenic Fusarium oxysporum strain Fo47 to induce resistance against Pythium ultimum infection in cucumber. Appl. Environ. Microbiol. 68: 4044-4060. https://doi.org/10.1128/AEM.68.8.4044-4060.2002
  20. Bent, E. 2006. Induced systemic resistance mediated by plant growth-promoting rhizobacteria (PGPR) and fungi (PGPF). In: Multigenic and Induced Systemic Resistance in Plants, eds. by S. Tuzun and E. Bent, pp. 9-22. Springer Science and Business Media, Inc.
  21. Bentley, R. and Meganathan, R. 1982. Biosynthesis of vitamin K (menaquinone) in bacteria. Microbiol. Rev. 46: 241-280.
  22. Boller, T. 1995. Chemoperception of microbial signals in plant cells. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46: 189-214. https://doi.org/10.1146/annurev.pp.46.060195.001201
  23. Boller, T. and Felix, G. 1996. Olfaction in plants: Specific perception of common microbial molecules. In: Biology of Plant-Microbe Interactions, eds. by G. Stacey, B. Mullin, and P. M. Gresshof, pp. 1-9. Inter. Natl Soc. Mol. Plant-Microbe Interac., St. Paul.
  24. Borges, A. A., Borges-Perez, A. and Fernandez-Falcon, M. 2004. Induced resistance to Fusarial wilt of banana by menadione sodium bisulphite treatments. Crop Prot. 23: 1245-1247. https://doi.org/10.1016/j.cropro.2004.05.010
  25. Brodersen, P., Malinovsky, F. G., Hematy, K., Newman, M. A. and Mundy, J. 2005. The role of salicylic acid in the induction of cell death in Arabidopsis acd11. Plant Physiol. 138: 1037-1045. https://doi.org/10.1104/pp.105.059303
  26. Brodhun, F., Cristobal-Sarramian, A., Zabel, S., Newie, J., Hamberg, M. and Feussner, I. 2013. An iron 13S-lipoxygenase with an alphalinolenic acid specific hydroperoxidase activity from Fusarium oxysporum. PLoS One 8: e64919. https://doi.org/10.1371/journal.pone.0064919
  27. Broekaert, W. F., Delaure, S. L., De Bolle, M. F. and Cammue, B. P. 2006. The role of ethylene in host-pathogen interactions. Annu. Rev. Phytopathol. 44: 393-416. https://doi.org/10.1146/annurev.phyto.44.070505.143440
  28. Brooker, R. J., Widmaier, E. P., Graham, L. E. and Stiling, P. D. 2008. Biology 1st ed. McGraw-Hill.
  29. Campos-Soriano, L., Garcia-Martinez, J. and San Segundo, B. 2012. The arbuscular mycorrhizal symbiosis promotes the systemic induction of regulatory defence-related genes in rice leaves and confers resistance to pathogen infection. Mol. Plant Pathol. 13: 579-592. https://doi.org/10.1111/j.1364-3703.2011.00773.x
  30. Charkowski, A. O., Alfano, J. R., Preston, G., Yuan, J., He, S. Y. and Collmer, A. 1998. The Pseudomonas syringae pv. tomato HrpW protein has domains similar to harpins and pectate lyases and can elicit the plant hypersensitive response and bind to pectate. J. Bacteriol. 180: 5211-5217.
  31. Chinchilla, D., Zipfel, C., Robatzek, S., Kemmerling, B., Nurnberger, T., Jones, J. D., Felix, G. and Boller, T. 2007. A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 448: 497-500. https://doi.org/10.1038/nature05999
  32. Chisholm, S. T., Coaker, G., Day, B. and Staskawicz, B. J. 2006. Hostmicrobe interactions: shaping the evolution of the plant immune response. Cell 124: 803-814. https://doi.org/10.1016/j.cell.2006.02.008
  33. Cho, S. M., Kang, B. R., Han, S. H., Anderson, A. J., Park, J.-Y., Lee, Y.-H., B. H. Cho, Yang, K.-Y., Ryu, C.-M. and Kim, Y. C. 2008. 2R,3R-butanediol, a bacterial volatile produced by Pseudomonas chlororaphis O6, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana. Mol. Plant-Microbe Interact. 21: 1067-1075. https://doi.org/10.1094/MPMI-21-8-1067
  34. Choi, D., Maeng, J. M., Ding, J. L. and Cha, W. S. 2007. Exopolysaccharide production and mycelial growth in an air-lift bioreactor using Fomitopsis pinicola. J. Microbiol. Biotechnol. 17: 1369-1378.
  35. Choi, H. K., Song, G. C., Yi, H. S. and Ryu, C. M. 2014. Field evaluation of the bacterial volatile derivative 3-pentanol in priming for induced resistance in pepper. J. Chem. Ecol. 40: 882-892. https://doi.org/10.1007/s10886-014-0488-z
  36. Chung, J. H., Song, G. C. and Ryu, C. M. 2015. Sweet scents from good bacteria: Case studies on bacterial volatile compounds for plant growth and immunity. Plant Mol. Biol. DOI 10.1007/s11103-015-0344-8
  37. Cole, S. J., Yoon, A. J., Faull, K. F. and Diener, A. C. 2014. Host perception of jasmonates promotes infection by Fusarium oxysporum formae speciales that produce isoleucine-and leucine-conjugated jasmonates. Mol. Plant Pathol. 15: 589-600. https://doi.org/10.1111/mpp.12117
  38. Conrath, U., Beckers, G. J., Flors, V., Garcia-Agustin, P., Jakab, G., Mauch, F., Newman, M. A., Pieterse, C. M., Poinssot, B., Pozo, M. J., Pugin, A., Schaffrath, U., Ton, J., Wendehenne, D., Zimmerli, L. and Mauch-Mani, B. 2006. Priming: getting ready for battle. Mol. Plant-Microbe Interact. 19: 1062-1071. https://doi.org/10.1094/MPMI-19-1062
  39. Conti, G. G., Pianezzola, A., Arnoldi, A., Violini, G. and Maffi, D. 1990. Preinoculation with tobacco necrosis virus enhances perosidase active and lignification. J. Phytopathol. 128: 191-202. https://doi.org/10.1111/j.1439-0434.1990.tb04265.x
  40. Cordier, C., Pozo, M. J., Barea, J. M., Gianinazzi, S. and Gianinazzipearson, V. 1998. Cell defense responses associated with localized and systemic resistance to Phytophthora parasitica induced in tomato by an arbuscular mycorrhizal fungus. Mol. Plant-Microbe Interact. 11: 1017-1028. https://doi.org/10.1094/MPMI.1998.11.10.1017
  41. Cortes-Barco, A. M., Goodwin, P. H. and Hsiang, T. 2010a Comparison of induced resistance activated by benzothiadiazole, (2R,3R)-butanediol and an isoparaffin mixture against anthracnose of Nicotiana benthamiana. Plant Pathol. 59: 643-653. https://doi.org/10.1111/j.1365-3059.2010.02283.x
  42. Cortes-Barco, A. M., Hsiang, T. and Goodwin, P. H. 2010b. Induced systemic resistance against three foliar diseases of Agrostis stolonifera by (2R,3R)-butanediol or an isoparaffin mixture. Ann. Appl. Biol. 157: 179-189. https://doi.org/10.1111/j.1744-7348.2010.00417.x
  43. Coutte, R. H. A. and Wagih, E. E. 1983. Induced resistance to virus infection. Phtopathologische Zeitschrift 107: 57-69.
  44. Coventry, H. S. and Dubery, I. A. 2001 Lipopolysaccharides from Burkholderia cepacia contribute to an enhanced defensive capacity and the induction of pathogenesis-related proteins in Nicotianae tabacum. Physiol. Mol. Plant Pathol. 58: 149-158. https://doi.org/10.1006/pmpp.2001.0323
  45. Cui, Y., Madi, L., Mukherjee, A., Dumenyo, C. K. and Chatterjee, A. K. 1996. The RsmA-mutants of Erwinia carotovora subsp. carotovora strain Ecc71 overexpress hrpNEcc and elicit a hypersensitive reaction-like response in tobacco leaves. Mol. Plant-Microbe Interact. 9: 565-573. https://doi.org/10.1094/MPMI-9-0565
  46. Culver, J. N. 1996. Tobamovirus cross protection using a potexvirus vector. Virology 226: 228-235. https://doi.org/10.1006/viro.1996.0650
  47. Demain, A. L. 1972. Riboflavin oversynthesis. Annu. Rev. Microbiol. 26: 369-388. https://doi.org/10.1146/annurev.mi.26.100172.002101
  48. De Meyer, G. and Hofte, M. 1997. Salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 induces resistance to leaf infection by Botrytis cinerea on bean. Phytopathology 87: 588-593. https://doi.org/10.1094/PHYTO.1997.87.6.588
  49. De Meyer, G., Capieau, K., Audenaert, K., Buchala, A., Metraux, J. P. and Hofte, M. 1999. Nanogram amounts of salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 activate the systemic acquired resistance pathway in bean. Mol. Plant-Microbe Interact. 12: 450-458. https://doi.org/10.1094/MPMI.1999.12.5.450
  50. De Meyer, G., Bigirimana, J., Elad, Y. and Hofte, M. 1998. Induced systemic resistance in Trichoderma harzianum T39 biocontrol of Botrytis cinerea. Eur. J. Plant Pathol. 104: 279-286. https://doi.org/10.1023/A:1008628806616
  51. Dempsey, D. A. and Klessig, D. F. 2012. SOS-too many signals for systemic acquired resistance? Trends Plant Sci. 17: 538-545. https://doi.org/10.1016/j.tplants.2012.05.011
  52. De Roman, M., Fernandez, I., Wyatt, T., Sahrawy, M., Heil, M. and Pozo, M. J. 2011. Elicitation of foliar resistance mechanisms transiently impairs root association with arbuscular mycorrhizal fungi. J. Ecol. 99: 36-45. https://doi.org/10.1111/j.1365-2745.2010.01752.x
  53. Desaki, Y., Miya, A., Venkatesh, B., Tsuyumu, S., Yamane, H., Kaku, H., Minami, E. and Shibuya, N. 2006. Bacterial lipopolysaccharides induce defense responses associated with programmed cell death in rice cells. Plant Cell Physiol. 47: 1530-1540. https://doi.org/10.1093/pcp/pcl019
  54. De Vleesschauwer, D., Djavaheri, M., Bakker, P. A. and Hofte, M. 2008. Pseudomonas fluorescens WCS374r-induced systemic resistance in rice against Magnaporthe oryzae is based on pseudobactinmediated priming for a salicylic acid-repressible multifaceted defense response. Plant Physiol. 148: 1996-2012. https://doi.org/10.1104/pp.108.127878
  55. De Vleesschauwer, D., Chernin, L. and Hofte, M. M. 2009. Differential effectiveness of Serratia plymuthica IC1270-induced systemic resistance against hemibiotrophic and necrotrophic leaf pathogens in rice. BMC Plant Biol. 9: 9. https://doi.org/10.1186/1471-2229-9-9
  56. Doares, S. H., Narvaez-Vasquez, J., Conconi, A. and Ryan, C. A. 1995. Salicylic acid inhibits synthesis of proteinase inhibitors in tomato leaves induced by systemin and jasmonic acid. Plant Physiol. 108: 1741-1746. https://doi.org/10.1104/pp.108.4.1741
  57. Dodds, P. N. and Rathjen, J. P. 2010. Plant immunity: towards an integrated view of plant-pathogen interactions. Nat. Rev. Genet. 11: 539-548.
  58. Dong, H., Delaney, T. P., Bauer, D. W. and Beer, S. V. 1999. Harpin induces disease resistance in Arabidopsis through the systemic acquired resistance pathway mediated by salicylic acid and the NIM1 gene. Plant J. 20: 207-215. https://doi.org/10.1046/j.1365-313x.1999.00595.x
  59. Dong, H. and Beer, S. V. 2000. Riboflavin induces disease resistance in plants by activating a novel signal transduction pathway. Phytopathology 90: 801-811. https://doi.org/10.1094/PHYTO.2000.90.8.801
  60. Dow, M., Newman, M. A. and von Roepenack, E. 2000. The induction and modulation of plant defense responses by bacterial lipopolysaccharides. Annu. Rev. Phytopathol. 38: 241-261. https://doi.org/10.1146/annurev.phyto.38.1.241
  61. D'Alessandro, A., Amelio, I., Berkers, C. R., Antonov, A., Vousden, K. H., Melino, G. and Zolla, L. 2014. Metabolic effect of TAp63alpha: enhanced glycolysis and pentose phosphate pathway, resulting in increased antioxidant defense. Oncotarget 5: 7722-7733. https://doi.org/10.18632/oncotarget.2300
  62. Engelberth, J., Koch, T., Schuler, G., Bachmann, N., Rechtenbach, J. and Boland, W. 2001. Ion channel-forming alamethicin is a potent elicitor of volatile biosynthesis and tendril coiling. Cross talk between jasmonate and salicylate signaling in lima bean. Plant Physiol. 125: 369-377. https://doi.org/10.1104/pp.125.1.369
  63. Engelhardt, S., Lee, J., Gabler, Y., Kemmerling, B., Haapalainen, M. L., Li, C. M., Wei, Z., Keller, H., Joosten, M., Taira, S. and Nurnberger, T. 2009. Separable roles of the Pseudomonas syringae pv. phaseolicola accessory protein HrpZ1 in ion-conducting pore formation and activation of plant immunity. Plant J. 57: 706-717. https://doi.org/10.1111/j.1365-313X.2008.03723.x
  64. Erbs, G. and Newman, M. A. 2003. The role of lipopolysaccharides in induction of plant defence responses. Mol. Plant Pathol. 4: 421-425. https://doi.org/10.1046/j.1364-3703.2003.00179.x
  65. Farag, M. A., Ryu, C. M., Sumner, L. W. and Pare, P. W. 2006. GC-MS SPME profiling of rhizobacterial volatiles reveals prospective inducers of growth promotion and induced systemic resistance in plants. Phytochemistry 67: 2262-2268. https://doi.org/10.1016/j.phytochem.2006.07.021
  66. Farag, M. A., Zhang, H. and Ryu, C. M. 2013. Dynamic chemical communication between plants and bacteria through airborne aignals: induced resistance by bacterial volatiles. J. Chem. Ecol. 39: 1007-1018. https://doi.org/10.1007/s10886-013-0317-9
  67. Felix, G., Duran, J. D., Volko, S. and Boller, T. 1999. Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J. 18: 265-276. https://doi.org/10.1046/j.1365-313X.1999.00265.x
  68. Fellbrich, G., Romanski, A., Varet, A., Blume, B., Brunner, F., Engelhardt, S., Felix, G., Kemmerling, B., Krzymowska, M. and Nurnberger, T. 2002. NPP1, a Phytophthora-associated trigger of plant defense in parsley and Arabidopsis. Plant J. 32: 375-390. https://doi.org/10.1046/j.1365-313X.2002.01454.x
  69. Fletcher, J. T. 1978. The use of avirulent virus strain to protect plants against the effects of virulent strains. Ann. Appl. Biol. 110-114.
  70. Fliegmann, J., Mithofer, A., Wanner, G. and Ebel, J. 2004. An ancient enzyme domain hidden in the putative beta-glucan elicitor receptor of soybean may play an active part in the perception of pathogen-associated molecular patterns during broad host resistance. J. Biol. Chem. 279: 1132-1140. https://doi.org/10.1074/jbc.M308552200
  71. Fujikawa, T., Sakaguchi, A., Nishizawa, Y., Kouzai, Y., Minami, E., Yano, S., Koga, H., Meshi, T. and Nishimura, M. 2012. Surface alpha-1,3-glucan facilitates fungal stealth infection by interfering with innate immunity in plants. PLoS Pathog. 8: e1002882. https://doi.org/10.1371/journal.ppat.1002882
  72. Fukuda, H., Ogawa, T. and Tanase, S. 1993. Ethylene production by micro-organisms. Adv. Microb. Physiol. 35: 275-306. https://doi.org/10.1016/S0065-2911(08)60101-0
  73. Gerber, I. B. and Dubery, I. A. 2004. Protein phosphorylation in Nicotiana tabacum cells in response to perception of lipopolysaccharides from Burkholderia cepacia. Phytochemistry 65: 2957-2966. https://doi.org/10.1016/j.phytochem.2004.09.005
  74. Gomez-Gomez, L. and Boller, T. 2000. FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol. Cell 5: 1003-1011. https://doi.org/10.1016/S1097-2765(00)80265-8
  75. Granado, J., Felix, G. and Boller, T. 1995. Perception of fungal sterols in plants (subnanomolar concentrations of ergosterol elicit extracellular alkalinization in tomato cells). Plant Physiol. 107: 485-490. https://doi.org/10.1104/pp.107.2.485
  76. Guimil, S., Chang, H. S., Zhu, T., Sesma, A., Osbourn, A., Roux, C., Ioannidis, V., Oakeley, E. J., Docquier, M., Descombes, P., Briggs, S. P. and Paszkowski, U. 2005. Comparative transcriptomics of rice reveals an ancient pattern of response to microbial colonization. Proc. Natl. Acad. Sci. USA. 102: 8066-8070. https://doi.org/10.1073/pnas.0502999102
  77. Haas, D. and Defago, G. 2005. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat. Rev. Microbiol. 3: 307-319. https://doi.org/10.1038/nrmicro1129
  78. Hammerschmidt, R. and Yang-Cashman, P. 1995. Induced resistance in cucurbits. In: Induced Resistance to Disease in Plants, eds. by R. Hammerschmidt and J. Kuc, pp. 63-85. Kluwer Academic Publishers, Dordrecht.
  79. Hammerschmidt, R. and Nicholson, R. L. 1999. A survey of plant defense responses to pathogens. In: Induced Plant Defenses Against Pathogens and Herbivores, eds. by A. Agrawal and S. Tuzun, APS Press, St Paul, MN.
  80. Han, S. H., Lee, S. J., Moon, J. H., Park, K. H., Yang, K. Y., Cho, B. H., Kim, K. Y., Kim, Y. W., Lee, M. C., Anderson, A. J. and Kim, Y. C. 2006. GacSdependent production of 2R, 3R-butanediol by Pseudomonas chlororaphis O6 is a major determinant for eliciting systemic resistance against Erwinia carotovora but not against Pseudomonas syringae pv. tabaci in tobacco. Mol. Plant-Microbe Interact. 19: 924-930. https://doi.org/10.1094/MPMI-19-0924
  81. Harman, G. E., Petzoldt, R., Comis, A. and Chen, J. 2004a. Interactions between Trichoderma harzianum strain T22 and maize inbred line Mo17 and effects of these interactions on diseases caused by Pythium ultimum and Colletotrichum graminicola. Phytopathology 94: 147-153. https://doi.org/10.1094/PHYTO.2004.94.2.147
  82. Harman, G. E., Howell, C. R., Viterbo, A., Chet, I. and Lorito, M. 2004b. Trichoderma species-opportunistic, avirulent plant symbionts. Nat. Rev. Microbiol. 2: 43-56. https://doi.org/10.1038/nrmicro797
  83. Harrison, M. J. 1999. Molecular and cellular aspects of the arbuscular mycorrhizal symbiosis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 361-389. https://doi.org/10.1146/annurev.arplant.50.1.361
  84. Hause, B., Maier, W., Miersch, O., Kramell, R. and Strack, D. 2002. Induction of jasmonate biosynthesis in arbuscular mycorrhizal barley roots. Plant Physiol. 130: 1213-1220. https://doi.org/10.1104/pp.006007
  85. Hause, B. and Fester, T. 2005. Molecular and cell biology of arbuscular mycorrhizal symbiosis. Planta 221: 184-196. https://doi.org/10.1007/s00425-004-1436-x
  86. Hause, B., Mrosk, C., Isayenkov, S. and Strack, D. 2007. Jasmonates in arbuscular mycorrhizal interactions. Phytochemistry 68: 101-110. https://doi.org/10.1016/j.phytochem.2006.09.025
  87. He, S. Y., Huang, H. C. and Collmer, A. 1993. Pseudomonas syringae pv. syringae harpinPss: a protein that is secreted via the Hrp pathway and elicits the hypersensitive response in plants. Cell 73: 1255-1266. https://doi.org/10.1016/0092-8674(93)90354-S
  88. Heil, M. 1999. Systemic acquired resistance: available information and open ecological questions. J. Ecol. 87: 341-346. https://doi.org/10.1046/j.1365-2745.1999.00359.x
  89. Heil, M., Hilpert, A., Kaiser, W. and Linsenmair, K. E. 2000. Reduced growth and seed set following chemical induction of pathogen defence: does systemic acquired resistance (SAR) incur allocation costs? J. Ecol. 88: 645-654. https://doi.org/10.1046/j.1365-2745.2000.00479.x
  90. Heil, M., Fiala, B., Maschwitz, U. and Linsenmair, K. E. 2001. On benefits of indirect defence: short-and long-term studies of antiherbivore protection via mutualistic ants. Oecologia 126: 395-403. https://doi.org/10.1007/s004420000532
  91. Heil, M. and Baldwin, I. T. 2002. Fitness costs of induced resistance: emerging experimental support for a slippery concept. Trends Plant Sci. 7: 61-67.
  92. Herrera-medina, M. J., Gagnon, H., Piche, Y., Ocampo, J. A., Garciagarrido, J. M. and Vierheilig, H. 2003. Root colonization by arbuscular mycorrhizal fungi is affected by the salicylic acid content of the plant. Plant Sci. 164: 993-998. https://doi.org/10.1016/S0168-9452(03)00083-9
  93. Hossain, M. M., Sultana, F., Kubota, M. and Hyakumachi, M. 2008. Differential inducible defense mechanisms against bacterial speck pathogen in Arabidopsis thaliana by plant-growth-promoting-fungus Penicillium sp. GP16-2 and its cell free filtrate. Plant Soil 304: 227-239. https://doi.org/10.1007/s11104-008-9542-3
  94. Howe, G. A. and Jander, G. 2008. Plant immunity to insect herbivores. Annu. Rev. Plant Biol. 59: 41-66. https://doi.org/10.1146/annurev.arplant.59.032607.092825
  95. Huang, H. C., Lin, R. H., Chang, C. J., Collmer, A. and Deng, W. L. 1995. The complete hrp gene cluster of Pseudomonas syringae pv. syringae 61 includes two blocks of genes required for harpinPss secretion that are arranged colinearly with Yersinia ysc homologs. Mol. Plant-Microbe Interact. 8: 733-746. https://doi.org/10.1094/MPMI-8-0733
  96. Hugues, J. A. and Ollennu, L. A. A. 1994. Mild strain protection of cocoa in Ghana against cocoa swollen shoot virus-a review. Plant Pathol. 43: 442-457. https://doi.org/10.1111/j.1365-3059.1994.tb01578.x
  97. Iavicoli, A., Boutet, E., Buchala, A. and Metraux, J. P. 2003. Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0. Mol. Plant-Microbe Interact. 16: 851-858. https://doi.org/10.1094/MPMI.2003.16.10.851
  98. Ishiga, Y., Uppalapati, S. R., Ishiga, T., Elavarthi, S., Martin, B. and Bender, C. L. 2009. The phytotoxin coronatine induces lightdependent reactive oxygen species in tomato seedlings. New Phytol. 181: 147-160. https://doi.org/10.1111/j.1469-8137.2008.02639.x
  99. Jin, Q., Hu, W., Brown, I., McGhee, G., Hart, P., Jones, A. L. and He, S. Y. 2001. Visualization of secreted Hrp and Avr proteins along the Hrp pilus during type III secretion in Erwinia amylovora and Pseudomonas syringae. Mol. Microbiol. 40: 1129-1139. https://doi.org/10.1046/j.1365-2958.2001.02455.x
  100. Jones, J. D. and Dangl, J. L. 2006. The plant immune system. Nature 444: 323-329. https://doi.org/10.1038/nature05286
  101. Kaku, H., Nishizawa, Y., Ishii-Minami, N., Akimoto-Tomiyama, C., Dohmae, N., Takio, K., Minami, E. and Shibuya, N. 2006. Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proc. Natl. Acad. Sci. USA. 103: 11086-11091. https://doi.org/10.1073/pnas.0508882103
  102. Kamoun, S. 2001. Nonhost resistance to Phytophthora: novel prospects for a classical problem. Curr. Opin. Plant Biol. 4: 295-300. https://doi.org/10.1016/S1369-5266(00)00176-X
  103. Kanchiswamy, C. N., Malnoy, M. and Maffei, M. E. 2015. Bioprospecting bacterial and fungal volatiles for sustainable agriculture. Trends Plant Sci. 20: 206-211. https://doi.org/10.1016/j.tplants.2015.01.004
  104. Kim, J. F. and Beer, S. V. 1998. HrpW of Erwinia amylovora, a new harpin that contains a domain homologous to pectate lyases of a distinct class. J. Bacteriol. 180: 5203-5210.
  105. Klarzynski, O., Plesse, B., Joubert, J. M., Yvin, J. C., Kopp, M., Kloareg, B. and Fritig, B. 2000. Linear beta-1,3 glucans are elicitors of defense responses in tobacco. Plant Physiol. 124: 1027-1038. https://doi.org/10.1104/pp.124.3.1027
  106. Klarzynski, O., Descamps, V., Plesse, B., Yvin, J. C., Kloareg, B. and Fritig, B. 2003. Sulfated fucan oligosaccharides elicit defense responses in tobacco and local and systemic resistance against tobacco mosaic virus. Mol. Plant-Microbe Interact. 16: 115-122. https://doi.org/10.1094/MPMI.2003.16.2.115
  107. Kloek, A. P., Verbsky, M. L., Sharma, S. B., Schoelz, J. E., Vogel, J., Klessig, D. F. and Kunkel, B. N. 2001. Resistance to Pseudomonas syringae conferred by an Arabidopsis thaliana coronatine-insensitive (coi1) mutation occurs through two distinct mechanisms. Plant J. 26: 509-522. https://doi.org/10.1046/j.1365-313x.2001.01050.x
  108. Kloepper, R. F., Norling, L. L., McDaniel, M. L. and Landt, M. 1991. Biochemical basis for the specificity of alloxan inactivation of calmodulin-dependent protein kinase II. Cell Calcium 12: 351-359. https://doi.org/10.1016/0143-4160(91)90051-F
  109. Kloepper, J. W., Ryu, C. M. and Zhang, S. 2004. Induced Systemic Resistance and Promotion of Plant Growth by Bacillus spp. Phytopathology 94: 1259-1266. https://doi.org/10.1094/PHYTO.2004.94.11.1259
  110. Koike, N., Hyakumachi, M., Kageyama, K., Tsuyumu, S. and Doke, N. 2001. Induction of systemic resistance in cucumber against several diseases by plant growth-promoting fungi: lignification and superoxide generation. Eur. J. Plant Pathol. 107: 523-533. https://doi.org/10.1023/A:1011203826805
  111. Koornneef, M. and Meinke, D. 2010. The development of Arabidopsis as a model plant. Plant J. 61: 909-921. https://doi.org/10.1111/j.1365-313X.2009.04086.x
  112. Kosaka, Y., Ryang, B.-S., Kobori, T., Shiomi, H., Yasuhara H. and Kataoka, M. 2006. Effectiveness of an attenuated Zucchini yellow mosaic virus isolate for cross-protecting cucumber. Plant Dis. 90: 67-72. https://doi.org/10.1094/PD-90-0067
  113. Kuc, J. 1982. Induced immunity to plant disease. Bioscience 32: 854-860. https://doi.org/10.2307/1309008
  114. Kurth, E. G., Peremyslov, V. V., Prokhnevsky, A. I., Kasschau, K. D., Miller, M., Carrington, J. C. and Dolja, V. V. 2012. Virus-derived gene expression and RNA interference vector for grapevine. J. Virol. 86: 6002-6009. https://doi.org/10.1128/JVI.00436-12
  115. Kwon, Y. S., Ryu, C. M., Lee, S., Park, H. B., Han, K. S., Lee, J. H., Lee, K., Chung, W. S., Jeong, M. J., Kim, H. K. and Bae, D. W. 2010. Proteome analysis of Arabidopsis seedlings exposed to bacterial volatiles. Planta 232: 1355-1370. https://doi.org/10.1007/s00425-010-1259-x
  116. Laurie-Berry, N., Joardar, V., Street, I. H. and Kunkel, B. N. 2006. The Arabidopsis thaliana JASMONATE INSENSITIVE 1 gene is required for suppression of salicylic acid-dependent defenses during infection by Pseudomonas syringae. Mol. Plant-Microbe Interact. 19: 789-800. https://doi.org/10.1094/MPMI-19-0789
  117. Le Blanc, J. G., Laino, J. E., del Valle, M. J., Vannini, V., van Sinderen, D., Taranto, M. P., de Valdez, G. F., de Giori, G. S. and Sesma, F. 2011. B-group vitamin production by lactic acid bacteria--current knowledge and potential applications. J. Appl. Microbiol. 111: 1297-1309. https://doi.org/10.1111/j.1365-2672.2011.05157.x
  118. Lee, J., Lee, K. and Shin, S. 2000. Theoretical studies of the response of a protein structure to cavity-creating mutations. Biophys. J. 78: 1665-1671. https://doi.org/10.1016/S0006-3495(00)76718-X
  119. Lee, R. F. and Keremane, M. L. 2013. Mild strain cross protection of tristeza: a review of research to protect against decline on sour orange in Florida. Front. Microbiol. 4: 259.
  120. Leeman, M., Den Ouden, F. M., Van Pelt, J. A., Dirkx, F. P. M., Steijl, H., Bakker, P. A. H. M. and Schippers, B. 1996. Iron availability affects induction of systemic resistance against Fusarium wilt of radish by Pseudomonas fluorescens. Phytopathology 86: 149-155. https://doi.org/10.1094/Phyto-86-149
  121. Leigh, J. A. and Coplin, D. L. 1992. Exopolysaccharides in plantbacterial interactions. Annu. Rev. Microbiol. 46: 307-346. https://doi.org/10.1146/annurev.mi.46.100192.001515
  122. Lindgren, P. B., Peet, R. C. and Panopoulos, N. J. 1986. Gene cluster of Pseudomonas syringae pv. phaseolicola controls pathogenicity of bean plants and hypersensitivity of nonhost plants. J. Bacteriol. 168: 512-522. https://doi.org/10.1128/jb.168.2.512-522.1986
  123. Liu, F., Wei, F., Wang, L., Liu, H., Zhu, X. and Liang, Y. 2010. Riboflavin activates defense responses in tobacco and induces resistance against Phytophthora parasitica and Ralstonia solanacearum. Physiol. Mol. Plant Pathol. 74: 330-336. https://doi.org/10.1016/j.pmpp.2010.05.002
  124. Lo, C. T., Liao, T. F. and Deng, T. C. 2000. Induction of systemic resistance of cucumber to cucumber green mosaic virus by the root-colonizing Trichoderma spp. Phytopathology 90: S47.
  125. Lugtenberg, B. and Kamilova, F. 2009. Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol. 63: 541-556. https://doi.org/10.1146/annurev.micro.62.081307.162918
  126. Lund, S. T., Stall, R. E. and Klee, H. J. 1998. Ethylene regulates the susceptible response to pathogen infection in tomato. Plant Cell 10: 371-382. https://doi.org/10.1105/tpc.10.3.371
  127. Mabrouk, Y., Mejri, S., Delavault, P., Simier, P. and Belhadj O. 2014. Lipopolysaccharide isolated from Rhizhobium leguminosarum strain P.SOM induces resistance in pea roots against Orobanche crenata. Afr. J. Microbiol. Res. 8: 2624-2630. https://doi.org/10.5897/AJMR2013.5762
  128. Madi, L. and Katan, J. 1998. Penicillium janczewskii and its metabolites, applied to leaves, elicit systemic acquired resistance to stem rot caused by Rhizoctonia solani. Physiol. Mol. Plant Pathol. 53: 163-175. https://doi.org/10.1006/pmpp.1998.0174
  129. Maurhofer, M., Hase, C., Meuwly, P., Metraux, J. P. and Defago, G. 1994. Induction of systemic resistance of tobacco to tobacco necrosis virus by the root-colonizing Pseudomonas fluorescens strain CHA0: Influence of the gacA gene and of pyoverdine production. Phytopathology 84: 139-146. https://doi.org/10.1094/Phyto-84-139
  130. Maurhofer, M., Reimmann, C., Schmidli-Sacherer, P., Heeb, S., Haas, D. and Defago, G. 1998. Salicylic acid biosynthetic genes expressed in Pseudomonas fluorescens strain P3 improve the induction of systemic resistance in tobacco against tobacco necrosis virus. Phytopathology 88: 678-684. https://doi.org/10.1094/PHYTO.1998.88.7.678
  131. McDowell, J. M. and Dangl, J. L. 2000. Signal transduction in the plant immune response. Trends Biochem. Sci. 25: 79-82. https://doi.org/10.1016/S0968-0004(99)01532-7
  132. McKinney, H. H. 1926. Virus mixtures that may not be detected in young tobacco plants. Phytopathology 16: 883.
  133. Meyer, A., Puhler, A. and Niehaus, K. 2001. The lipopolysaccharides of the phytopathogen Xanthomonas campestris pv. campestris induce an oxidative burst reaction in cell cultures of Nicotiana tabacum. Planta 213: 214-222. https://doi.org/10.1007/s004250000493
  134. Miller, M. B. and Bassler, B. L. 2001. Quorum sensing in bacteria. Annu. Rev. Microbiol. 55: 165-199. https://doi.org/10.1146/annurev.micro.55.1.165
  135. Misra, R. S. and Sriram, S. 2002. Medicinal value and export potential of tropical tuber crops. In: Series Recent Progress in Medicinal Plants, Crop Improvement, Production Technology and Commerce, eds. by J. N. Govil, J. Pandey, B. G. Shivkumar and V. K. Singh, pp. 376-386. SCITech, USA.
  136. Mithofer, A., Fliegmann, J. and Ebel, J. 1999. Isolation of a French bean (Phaseolus vulgaris L.) homolog to the beta-glucan elicitorbinding protein of soybean (Glycine max L.). Biochim. Biophys. Acta. 1418: 127-132. https://doi.org/10.1016/S0005-2736(99)00010-3
  137. Mithofer, A., Fliegmann, J., Neuhaus-Url, G., Schwarz, H. and Ebel, J. 2000. The hepta-beta-glucoside elicitor-binding proteins from legumes represent a putative receptor family. Biol. Chem. 381: 705-713.
  138. Miya, A., Albert, P., Shinya, T., Desaki, Y., Ichimura, K., Shirasu, K., Narusaka, Y., Kawakami, N., Kaku, H. and Shibuya, N. 2007. CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proc. Natl. Acad. Sci. 104: 19613-19618. https://doi.org/10.1073/pnas.0705147104
  139. Nakazono-Nagaoka, E., Takahashi, T., Shimizu, T., Kosaka, Y., Natsuaki, T., Omura, T. and Sasaya, T. 2009. Cross-protection against Bean yellow mosaic virus (BYMV) and Clover yellow vein virus by Attenuated BYMV isolate M11. Phytopathology 99: 251-257. https://doi.org/10.1094/PHYTO-99-3-0251
  140. Newman, M. A., von Roepenack, E., Daniels, M. and Dow, M. 2000. Lipopolysaccharides and plant responses to phytopathogenic bacteria. Mol. Plant Pathol. 1: 25-31. https://doi.org/10.1046/j.1364-3703.2000.00004.x
  141. Nicaise, V. 2014. Crop immunity against viruses: outcomes and future challenges. Front Plant Sci. 5: 660.
  142. Niki, T., Mitsuhara, I., Seo, S., Ohtsubo, N. and Ohashi, Y. 1998. Antagonistic effect of salicylic acid and jasmonic acid on the expression of pathogenesis-related (PR) protein genes in wounded mature tobacco leaves. Plant Cell Physiol. 39: 500-507. https://doi.org/10.1093/oxfordjournals.pcp.a029397
  143. Nishimura, M. T. and Dangl, J. L. 2010. Arabidopsis and the plant immune system. Plant J. 61: 1053-1066. https://doi.org/10.1111/j.1365-313X.2010.04131.x
  144. Nojiri, H., Sugimori, M., Yamane, H., Nishimura, Y., Yamada, A., Shibuya, N., Kodama, O., Murofushi, N. and Omori, T. 1996. Involvement of jasmonic acid in elicitor-induced phytoalexin production in suspension-cultured rice cells. Plant Physiol. 110: 387-392. https://doi.org/10.1104/pp.110.2.387
  145. Nuhse, T. S., Peck, S. C., Hirt, H. and Boller, T. 2000. Microbial elicitors induce activation and dual phosphorylation of the Arabidopsis thaliana MAPK 6. J. Biol. Chem. 275: 7521-7526. https://doi.org/10.1074/jbc.275.11.7521
  146. Nurnberger, T., Brunner, F., Kemmerling, B. and Piater, L. 2004. Innate immunity in plants and animals: striking similarities and obvious differences. Immunol. Rev. 198: 249-266. https://doi.org/10.1111/j.0105-2896.2004.0119.x
  147. Nunez-Pastrana, R., Arcos-Ortega, G. F., Souza-Perera, R. A., Sanchez-Borges, C. A., Nakazawa-Ueji, Y. E., Garcia-Villalobos, F. J., Guzman-Antonio, A. A. and Zuniga-Aguilar, J. J. 2011. Ethylene, but not salicylic acid or methyl jasmonate, induces a resistance response against Phytophthora capsici in Habanero pepper. Eur. J. Plant Pathol. 131: 669-683. https://doi.org/10.1007/s10658-011-9841-z
  148. Okuno, T., Nakayama, M., Okajima, N. and Furusawa, I. 1991. Systemic resistance to downy mildew and appearance of acid solution proteteins in cucumber leaves. Ann. Phytopathol. Soc. Japan 57: 203-211. https://doi.org/10.3186/jjphytopath.57.203
  149. Ongena, M., Jacques, P., Toure, Y., Destain, J., Jabrane, A. and Thonart, P. 2005. Involvement of fengycin-type lipopeptides in the multifaceted biocontrol potential of Bacillus subtilis. Appl. Micro-biol. Biotechnol. 69: 29-38. https://doi.org/10.1007/s00253-005-1940-3
  150. Ongena, M., Jourdan, E., Adam, A., Paquot, M., Brans, A., Joris, B., Arpigny, J. L. and Thonart, P. 2007. Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ. Microbiol. 9: 1084-1090. https://doi.org/10.1111/j.1462-2920.2006.01202.x
  151. Ongena, M. and Jacques, P. 2008. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol. 16: 115-125. https://doi.org/10.1016/j.tim.2007.12.009
  152. Ortmann, I. and Moerschbacher, B. M. 2006. Spent growth medium of Pantoea agglomerans primes wheat suspension cells for augmented accumulation of hydrogen peroxide and enhanced peroxidase activity upon elicitation. Planta 224: 963-970. https://doi.org/10.1007/s00425-006-0271-7
  153. Pajerowska-Mukhtar, K. M., Emerine, D. K. and Mukhtar, M. S. 2013. Tell me more: roles of NPRs in plant immunity. Trends Plant Sci. 18: 402-411. https://doi.org/10.1016/j.tplants.2013.04.004
  154. Park, S. W., Kaimoyo, E., Kumar, D., Mosher, S. and Klessig, D. F. 2007. Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science 318: 113-116. https://doi.org/10.1126/science.1147113
  155. Park, K., Kloepper, J. W. and Ryu, C. M. 2008. Rhizobacterial exopolysaccharides elicit induced resistance on cucumber. J. Microbiol. Biotechnol. 18: 1095-1100.
  156. Paszkowski, U. 2006. Mutualism and parasitism: the yin and yang of plant symbioses. Curr. Opin. Plant Biol. 9: 364-370. https://doi.org/10.1016/j.pbi.2006.05.008
  157. Pierson, L. S., 3rd, Wood, D. W. and Pierson, E. A. 1998. Homoserine lactone-mediated gene regulation in plant-associated bacteria. Annu. Rev. Phytopathol. 36: 207-225. https://doi.org/10.1146/annurev.phyto.36.1.207
  158. Pieterse, C. M. J., Van Pelt, J. A., Van Wees, S. C. M., Ton, J., Leon-Kloosterziel, K. M., Keurentjes, J. J. B., Verhagen, B. W. M., Knoester, M., Ientse Van der Sluis, Bakker, P. A. H. M. and Van Loon, L. C. 2001. Rhizobacteria-mediated induced systemic resistance: triggering, signaling and expression. Eur. J. Plant Pathol. 107: 51-61. https://doi.org/10.1023/A:1008747926678
  159. Pieterse, C. M. J., Van Wees, S. C. M., Ton, J., Leon-Kloosterziel, K. M., Van Pelt, J. A., Keurentjes, J. J. B., Knoester, M. and Van Loon, L. C. 2000. Rhizobacteria-mediated induced systemic resistance (ISR) in Arabidopsis: involvement of jasmonate and ethylene. In: Biology of Plant-Microbe Interactions, eds. by P. J. G. M. De Wit, T. Bisseling and W. J. Stiekema, pp. 291-296. International Society for Molecular Plant-Microbe Interactions., St. Paul.
  160. Pieterse, C. M., Zamioudis, C., Berendsen, R. L., Weller, D. M., Van Wees, S. C. and Bakker, P. A. 2014. Induced systemic resistance by beneficial microbes. Annu. Rev. Phytopathol. 52: 347-375. https://doi.org/10.1146/annurev-phyto-082712-102340
  161. Pozo, M. J., Cordier, C., Dumas-Gaudot, E., Gianinazzi, S., Barea, J. M. and Azcon-Aguilar, C. 2002. Localized versus systemic effect of arbuscular mycorrhizal fungi on defence responses to Phytophthora infection in tomato plants. J. Exp. Bot. 53: 525-534. https://doi.org/10.1093/jexbot/53.368.525
  162. Pozo, M. J. and Azcon-Aguilar, C. 2007. Unraveling mycorrhizainduced resistance. Curr. Opin. Plant Biol. 10: 393-398. https://doi.org/10.1016/j.pbi.2007.05.004
  163. Pozo, M. J., Verhage, A., Garcia-andrade, J., Garcia, J. M. and Azconaguilar, C. 2009. Priming plant defence against pathogens by arbuscular mycorrhizal fungi. In: Mycorrhizas-Functional Processes and Ecological Impact, eds. by C. Azcon-Aguilar, J. M. Barea, S. Gianinazzi and V. Gianinazzi-Pearson, pp. 123-135. Springer.
  164. Press, C. M., Wilson, M., Tuzun, S. and Kloepper, J. W. 1997. Salicylic acid produced by Serratia marcescens 90-166 is not the primary determinant of induced systemic resistance in cucumber or tobacco. Mol. Plant-Microbe Interact. 10: 761-768. https://doi.org/10.1094/MPMI.1997.10.6.761
  165. Press, C. M., Loper, J. E. and Kloepper, J. W. 2001. Role of iron in rhizobacteria-mediated induced systemic resistance of cucumber. Phytopathology 91: 593-598. https://doi.org/10.1094/PHYTO.2001.91.6.593
  166. Preston, G., Huang, H. C., He, S. Y. and Collmer, A. 1995. The HrpZ proteins of Pseudomonas syringae pvs. syringae, glycinea and tomato are encoded by an operon containing Yersinia ysc homologs and elicit the hypersensitive response in tomato but not soybean. Mol. Plant-Microbe Interact. 8: 717-732. https://doi.org/10.1094/MPMI-8-0717
  167. Qutob, D., Kamoun, S. and Gijzen, M. 2002. Expression of a Phytophthora sojae necrosis-inducing protein occurs during transition from biotrophy to necrotrophy. Plant J. 32: 361-373. https://doi.org/10.1046/j.1365-313X.2002.01439.x
  168. Raaijmakers, J. M., De Bruijn, I., Nybroe, O. and Ongena, M. 2010. Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfActa.nts and antibiotics. FEMS Microbiol. Rev. 34: 1037-1062. https://doi.org/10.1111/j.1574-6976.2010.00221.x
  169. Raffaele, S., Rivas, S. and Roby, D. 2006. An essential role for salicylic acid in AtMYB30-mediated control of the hypersensitive cell death program in Arabidopsis. FEBS Lett. 580: 3498-3504. https://doi.org/10.1016/j.febslet.2006.05.027
  170. Rahman, A., Kuldau, G. A. and Uddin, W. 2014. Induction of salicylic acid-mediated defense response in perennial ryegrass against infection by Magnaporthe oryzae. Phytopathology 104: 614-623. https://doi.org/10.1094/PHYTO-09-13-0268-R
  171. Rahman, A., Uddin, W. and Wenner, N. G. 2015. Induced systemic resistance responses in perennial ryegrass against Magnaporthe oryzae elicited by semi-purified surfactin lipopeptides and live cells of Bacillus amyloliquefaciens. Mol. Plant Pathol. 16: 546-558. https://doi.org/10.1111/mpp.12209
  172. Ross, A. F. 1961a. Localized acquired resistance to plant virus infection in hypersensitive hosts. Virology 14: 329-339. https://doi.org/10.1016/0042-6822(61)90318-X
  173. Ross, A. F. 1961b. Systemic acquired resistance induced by localized virus infections in plants. Virology 14: 340-358. https://doi.org/10.1016/0042-6822(61)90319-1
  174. Rudrappa, T., Biedrzycki, M. L., Kunjeti, S. G., Donofrio, N. M., Czymmek, K. J., Pare, P. W. and Bais, H. P. 2010. The rhizobacterial elicitor acetoin induces systemic resistance in Arabidopsis thaliana. Commun. Integr. Biol. 3: 130-138. https://doi.org/10.4161/cib.3.2.10584
  175. Ryu, C. M., Farag, M. A., Hu, C. H., Reddy, M. S., Kloepper, J. W. and Pare, P. W. 2004. Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol. 134: 1017-1026. https://doi.org/10.1104/pp.103.026583
  176. Ryu, C. M. Cho, H. K., Lee, C. H., Murphy, J. F., Lee, J. K. and Kloepper, J. W. 2013. Modulation of quorum sensing in acyl-homoserine lactone-producing or-degrading tobacco plants leads to alteration of induced systemic resistance elicited by the rhizobacterium Serratia marcescens 90-166. Plant Pathol. J. 29: 182-192. https://doi.org/10.5423/PPJ.SI.11.2012.0173
  177. Schikora, A., Schenk, S. T., Stein, E., Molitor, A., Zuccaro, A. and Kogel, K. H. 2011. N-acyl-homoserine lactone confers resistance toward biotrophic and hemibiotrophic pathogens via altered activation of AtMPK6. Plant Physiol. 157: 1407-1418. https://doi.org/10.1104/pp.111.180604
  178. Schuhegger, R., Ihring, A., Gantner, S., Bahnweg, G., Knappe, C., Vogg, G., Hutzler, P., Schmid, M., Van Breusegem, F., Eberl, L., Hartmann, A. and Langebartels, C. 2006. Induction of systemic resistance in tomato by N-acyl-L-homoserine lactone-producing rhizosphere bacteria. Plant Cell Environ. 29: 909-918. https://doi.org/10.1111/j.1365-3040.2005.01471.x
  179. Schulze, B., Mentzel, T., Jehle, A. K., Mueller, K., Beeler, S., Boller, T., Felix, G. and Chinchilla, D. 2010. Rapid heteromerization and phosphorylation of ligand-activated plant transmembrane receptors and their associated kinase BAK1. J. Biol. Chem. 285: 9444-9451. https://doi.org/10.1074/jbc.M109.096842
  180. Segarra, G., Casanova, E., Bellido, D., Odena, M. A., Oliveira, E. and Trillas, I. 2007. Proteome, salicylic acid and jasmonic acid changes in cucumber plants inoculated with Trichoderma asperellum strain T34. Proteomics 7: 3943-3952. https://doi.org/10.1002/pmic.200700173
  181. Sequeira, L. 1983. Mechanisms of induced resistance in plants. Annu. Rev. Microbiol. 37: 51-79. https://doi.org/10.1146/annurev.mi.37.100183.000411
  182. Serfling, A., Wirsel, S. G., Lind, V. and Deising, H. B. 2007. Performance of the biocontrol fungus Piriformospora indica on wheat under greenhouse and field conditions. Phytopathology 97: 523-531. https://doi.org/10.1094/PHYTO-97-4-0523
  183. Sharp, J. K., Valent, B. and Albersheim, P. 1984. Purification and partial characterization of a beta-glucan fragment that elicits phytoalexin accumulation in soybean. J. Biol. Chem. 259: 11312-11320.
  184. Sheard, L. B., Tan, X., Mao, H., Withers, J., Ben-Nissan, G., Hinds, T. R., Kobayashi, Y., Hsu, F. F., Sharon, M., Browse, J., He, S. Y., Rizo, J., Howe, G. A. and Zheng, N. 2010. Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature 468: 400-405. https://doi.org/10.1038/nature09430
  185. Shibuya, N. and Minami, E. 2001. Oligosaccharide signalling for defence responses in plant. Physiol. Mol. Plant Pathol. 59: 223-233. https://doi.org/10.1006/pmpp.2001.0364
  186. Silipo, A., Molinaro, A., Sturiale, L., Dow, J. M., Erbs, G., Lanzetta, R., Newman, M. A. and Parrilli, M. 2005. The elicitation of plant innate immunity by lipooligosaccharide of Xanthomonas campestris. J. Biol. Chem. 280: 33660-33668. https://doi.org/10.1074/jbc.M506254200
  187. Somerville, C. and Koornneef, M. 2002. A fortunate choice: the history of Arabidopsis as a model plant. Nat. Rev. Genet. 3: 883-889.
  188. Song, G. C., Choi, H. K. and Ryu, C. M. 2013. The folate precursor para-aminobenzoic acid elicits induced resistance against Cucumber mosaic virus and Xanthomonas axonopodis. Ann. Bot. 111: 925-934. https://doi.org/10.1093/aob/mct049
  189. Song, G. C. and Ryu, C. M. 2013. Two volatile organic compounds trigger plant self-defense against a bacterial pathogen and a sucking insect in cucumber under open field conditions. Int. J. Mol. Sci. 14: 9803-9819. https://doi.org/10.3390/ijms14059803
  190. Spoel, S. H., Johnson, J. S. and Dong, X. 2007. Regulation of tradeoffs between plant defenses against pathogens with different lifestyles. Proc. Natl. Acad. Sci. USA 104: 18842-18847. https://doi.org/10.1073/pnas.0708139104
  191. Stein, E., Molitor, A., Kogel, K. H. and Waller, F. 2008. Systemic resistance in Arabidopsis conferred by the mycorrhizal fungus Piriformospora indica requires jasmonic acid signaling and the cytoplasmic function of NPR1. Plant Cell Physiol. 49: 1747-1751. https://doi.org/10.1093/pcp/pcn147
  192. Tada, Y., Hata, S., Takata, Y., Nakayashiki, H., Tosa, Y. and Mayama, S. 2001. Induction and signaling of an apoptotic response typified by DNA laddering in the defense response of oats to infection and elicitors. Mol. Plant-Microbe Interact. 14: 477-486. https://doi.org/10.1094/MPMI.2001.14.4.477
  193. Taheri, P. and Hofte, M. 2007. Induction of systemic defense responses in rice against the sheath blight pathogen Rhizoctonia solani, by means of riboflavin. Commun. Agric. Appl. Biol. Sci. 72: 983-987.
  194. Taheri, P. and Tarighi, S. 2010. Riboflavin induces resistance in rice against Rhizoctonia solani via jasmonate-mediated priming of phenylpropanoid pathway. J. Plant Physiol. 167: 201-208. https://doi.org/10.1016/j.jplph.2009.08.003
  195. Taheri, P. and Tarighi, S. 2011. A survey on basal resistance and riboflavin-induced defense responses of sugar beet against Rhizoctonia solani. J. Plant Physiol. 168: 1114-1122. https://doi.org/10.1016/j.jplph.2011.01.001
  196. Takai, R., Hasegawa, K., Kaku, H., Shibuya, N. and Minami, E. 2001. Isolation and analysis of expression mechanisms of a rice gene, EL5, which shows structural similarity to ATL family from Arabidopsis, in response to N-acetylchitooligosaccharide elicitor. Plant Sci. 160: 577-583. https://doi.org/10.1016/S0168-9452(00)00390-3
  197. Taki, A., Yamagishi, N. and Yoshikawa, N. 2013. Development of apple latent spherical virus-based vaccines against three tospoviruses. Virus Res. 176: 251-258. https://doi.org/10.1016/j.virusres.2013.06.015
  198. Tamura, A., Kato, T., Taki, A., Sone, M., Satoh, N., Yamagishi, N., Takahashi, T., Ryo, B. S., Natsuaki, T. and Yoshikawa, N. 2013. Preventive and curative effects of Apple latent spherical virus vectors harboring part of the target virus genome against potyvirus and cucumovirus infections. Virology 446: 314-324. https://doi.org/10.1016/j.virol.2013.08.019
  199. Thomma, B. P., Eggermont, K., Tierens, K. F. and Broekaert, W. F. 1999. Requirement of functional ethylene-insensitive 2 gene for efficient resistance of Arabidopsis to infection by Botrytis cinerea. Plant Physiol. 121: 1093-1102. https://doi.org/10.1104/pp.121.4.1093
  200. Tran, H., Ficke, A., Asiimwe, T., Hofte, M. and Raaijmakers, J. M. 2007. Role of the cyclic lipopeptide massetolide A in biological control of Phytophthora infestans and in colonization of tomato plants by Pseudomonas fluorescens. New Phytol. 175: 731-742. https://doi.org/10.1111/j.1469-8137.2007.02138.x
  201. Umemoto, N., Kakitani, M., Iwamatsu, A., Yoshikawa, M., Yamaoka, N. and Ishida, I. 1997. The structure and function of a soybean beta-glucan-elicitor-binding protein. Proc. Natl. Acad. Sci. USA 94: 1029-1034. https://doi.org/10.1073/pnas.94.3.1029
  202. Uppalapati, S. R., Ayoubi, P., Weng, H., Palmer, D. A., Mitchell, R. E., Jones, W. and Bender, C. L. 2005. The phytotoxin coronatine and methyl jasmonate impact multiple phytohormone pathways in tomato. Plant J. 42: 201-217. https://doi.org/10.1111/j.1365-313X.2005.02366.x
  203. Valkonen, J. P., Rajamaki, M. L. and Kekarainen, T. 2002. Mapping of viral genomic regions important in cross-protection between strains of a potyvirus. Mol. Plant-Microbe Interact. 15: 683-692. https://doi.org/10.1094/MPMI.2002.15.7.683
  204. Vander, P., Varum, K. M., Domard, A., Gueddari, N. E. E. and Moerschbacher, B. M. 1998. Comparison of the ability of partially N-acetylated chitosans and chitooligosaccharides to elicit resistance reactions in wheat leaves. Plant Physiol. 118: 1353-1359. https://doi.org/10.1104/pp.118.4.1353
  205. van Loon, L. C., Bakker, P. A. and Pieterse, C. M. 1998. Systemic resistance induced by rhizosphere bacteria. Annu. Rev. Phytopathol. 36: 453-483. https://doi.org/10.1146/annurev.phyto.36.1.453
  206. van Loon, L. C. 2007. Plant responses to plant growth-promoting rhizobacteria. Eur. J. Plant Pathol. 119: 243-254. https://doi.org/10.1007/s10658-007-9165-1
  207. van Peer, R. and Schippers, B. 1992. LPS of plant growth-promoting Pseudomonas sp. strain WCS417r induce resistance in carnation to Fusarium wilt. Netherland J. Plant Pathol. 98: 129-139. https://doi.org/10.1007/BF01996325
  208. Veit, S., Worle, J. M., Nurnberger, T., Koch, W. and Seitz, H. U. 2001. A novel protein elicitor (PaNie) from Pythium aphanidermatum induces multiple defense responses in carrot, Arabidopsis and tobacco. Plant Physiol. 127: 832-841. https://doi.org/10.1104/pp.010350
  209. Vijayan, P., Shockey, J., Levesque, C. A., Cook, R. J. and Browse, J. 1998. A role for jasmonate in pathogen defense of Arabidopsis. Proc. Natl. Acad. Sci. USA 95: 7209-7214. https://doi.org/10.1073/pnas.95.12.7209
  210. Viterbo, A., Wiest, A., Brotman, Y., Chet, I. and Kenerley, C. 2007. The 18mer peptaibols from Trichoderma virens elicit plant defence responses. Mol. Plant Pathol. 8: 737-746. https://doi.org/10.1111/j.1364-3703.2007.00430.x
  211. Vlot, A. C., Klessig, D. F. and Park, S. W. 2008. Systemic acquired resistance: the elusive signal(s). Curr. Opin. Plant Biol. 11: 436-442. https://doi.org/10.1016/j.pbi.2008.05.003
  212. Wafaa, M. H., W., Hussein, M. M., Mehanna, H. M. and El-Moneim, D. 2014. Bacteria polysaccharides elicit resistance of wheat against some biotic and abiotic stress. Int. J. Pharm. Sci. Rev. Res. 29: 292-298.
  213. Waller, F., Mukherjee, K., Deshmukh, S. D., Achatz, B., Sharma, M., Schafer, P. and Kogel, K. H. 2008. Systemic and local modulation of plant responses by Piriformospora indica and related Sebacinales species. J. Plant Physiol. 165: 60-70. https://doi.org/10.1016/j.jplph.2007.05.017
  214. Wan, J., Zhang, X. C., Neece, D., Ramonell, K. M., Clough, S., Kim, S. Y., Stacey, M. G. and Stacey, G. 2008. A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis. Plant Cell 20: 471-81. https://doi.org/10.1105/tpc.107.056754
  215. Wasternack, C. 2007. Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann. Bot. 100: 681-697. https://doi.org/10.1093/aob/mcm079
  216. Wei, G., Kloepper, J. W. and Tuzun, S. 1991. Induction of systemic resistance of cucumber to Colletotrichum orbiculare by select strains of plant growth-promoting rhizobacteria. Phytopathology 81: 1508-1512. https://doi.org/10.1094/Phyto-81-1508
  217. Wei, Z. M., Laby, R. J., Zumoff, C. H., Bauer, D. W., He, S. Y., Collmer, A. and Beer, S. V. 1992. Harpin, elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora. Science 257: 85-88. https://doi.org/10.1126/science.1621099
  218. Weller, D. M., Raaijmakers, J. M., Gardener, B. B. and Thomashow, L. S. 2002. Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu. Rev. Phytopathol. 40: 309-348. https://doi.org/10.1146/annurev.phyto.40.030402.110010
  219. Weller, D. M., Mavrodi, D. V., van Pelt, J. A., Pieterse, C. M., van Loon, L. C. and Bakker, P. A. 2012. Induced systemic resistance in Arabidopsis thaliana against Pseudomonas syringae pv. tomato by 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens. Phytopathology 102: 403-412. https://doi.org/10.1094/PHYTO-08-11-0222
  220. Wen, F., Lister, R. M. and Fattouh, F. A. 1991. Cross-protection among strains of barley yellow dwarf virus. J. Gen. Virol. 72: 791-799. https://doi.org/10.1099/0022-1317-72-4-791
  221. Yamada, A., Shibuya, N., Kodama, O. and Akatsuka, T. 1993. Induction of phytoalexin formation in suspension-cultured rice cells by N-acetylchitooligosaccharides. Biosci. Biotech. Biochem. 57: 405-409. https://doi.org/10.1271/bbb.57.405
  222. Yamaguchi, T., Yamada, A., Hong, N., Ogawa, T., Ishii, T. and Shibuya, N. 2000. Differences in the recognition of glucan elicitor signals between rice and soybean: beta-glucan fragments from the rice blast disease fungus Pyricularia oryzae that elicit phytoalexin biosynthesis in suspension-cultured rice cells. Plant Cell 12: 817-826.
  223. Yang, J. W., Yu, S. H. and Ryu, C. M. 2009. Priming of defense-related genes confers root-colonizing bacilli-elicited induced systemic resistance in pepper. Plant Pathol. J. 25: 389-399. https://doi.org/10.5423/PPJ.2009.25.4.389
  224. Yang, S. Y., Park, M. R., Kim, I. S., Kim, Y. C., Yang, J. W. and Ryu, C.-M. 2010. 2-Aminobenzoic acid of Bacillus sp. BS107 as an ISR determinant against Pectobacterium carotovorum subsp. carotovorum SCC1 in tobacco. Eur. J. Plant Pathol. 129: 371-378.
  225. Yang, Z., Endo, S., Tanida, A., Kai, K. and Watanabe, N. 2009. Synergy effect of sodium acetate and glycosidically bound volatiles on the release of volatile compounds from the unscented cut flower (Delphinium elatum L. "Blue Bird"). J. Agric. Food Chem. 57: 6396-6401. https://doi.org/10.1021/jf901176m
  226. Yedidia, I., Shoresh, M., Kerem, Z., Benhamou, N., Kapulnik, Y. and Chet, I. 2003. Concomitant induction of systemic resistance to Pseudomonas syringae pv. lachrymans in cucumber by Trichoderma asperellum (T-203) and accumulation of phytoalexins. Appl. Environ. Microbiol. 69: 7343-7353. https://doi.org/10.1128/AEM.69.12.7343-7353.2003
  227. Yoon, J. Y., Ahn, H. I., Kim, M., Tsuda, S. and Ryu, K. H. 2006. Pepper mild mottle virus pathogenicity determinants and cross protection effect of attenuated mutants in pepper. Virus Res. 118: 23-30. https://doi.org/10.1016/j.virusres.2005.11.004
  228. You, B. J., Chiang, C. H., Chen, L. F., Su, W. C. and Yeh, S. D. 2005. Engineered mild strains of Papaya ringspot virus for broader cross protection in Cucurbits. Phytopathology 95: 533-540. https://doi.org/10.1094/PHYTO-95-0533
  229. Zeidler, D., Zahringer, U., Gerber, I., Dubery, I., Hartung, T., Bors, W., Hutzler, P. and Durner, J. 2004. Innate immunity in Arabidopsis thaliana: lipopolysaccharides activate nitric oxide synthase (NOS) and induce defense genes. Proc. Natl. Acad. Sci. U. S. A. 101: 15811-15816. https://doi.org/10.1073/pnas.0404536101
  230. Zhang, B., Ramonell, K., Somerville, S. and Stacey, G. 2002. Characterization of early, chitin-induced gene expression in Arabidopsis. Mol. Plant-Microbe Interact. 15: 963-970. https://doi.org/10.1094/MPMI.2002.15.9.963
  231. Zhang, Z. M., Wu, W. W. and Li, G. K. 2008. A GC-MS study of the volatile organic composition of straw and oyster mushrooms during maturity and its relation to antioxidant activity. J. Chromatogr. Sci. 46: 690-696. https://doi.org/10.1093/chromsci/46.8.690
  232. Zhang, Z. M., Wu, W. W. and Li, G. K. 2009. Study of the alarming volatile characteristics of Tessaratoma papillosa using SPME-GCMS. J. Chromatogr. Sci. 47: 291-296. https://doi.org/10.1093/chromsci/47.4.291
  233. Zhang, Z. Z., Li, Y. B., Qi, L. and Wan, X. C. 2006. Antifungal activities of major tea leaf volatile constituents toward Colletorichum camelliae Massea. J. Agric. Food Chem. 54: 3936-3940. https://doi.org/10.1021/jf060017m
  234. Zipfel, C. and Felix, G. 2005. Plants and animals: a different taste for microbes? Curr. Opin. Plant Biol. 8: 353-360. https://doi.org/10.1016/j.pbi.2005.05.004
  235. Zipfel, C., Kunze, G., Chinchilla, D., Caniard, A., Jones, J. D., Boller, T. and Felix, G. 2006. Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125: 749-760. https://doi.org/10.1016/j.cell.2006.03.037
  236. Zipfel, C. 2008. Pattern-recognition receptors in plant innate immunity. Curr. Opin. Immunol. 20: 10-16. https://doi.org/10.1016/j.coi.2007.11.003

Cited by

  1. Disease Management in Road Trees and Pepper Plants by Foliar Application of Bacillus spp. vol.22, pp.2, 2016, https://doi.org/10.5423/RPD.2016.22.2.81
  2. Are Bacterial Volatile Compounds Poisonous Odors to a Fungal Pathogen Botrytis cinerea, Alarm Signals to Arabidopsis Seedlings for Eliciting Induced Resistance, or Both? vol.7, 2016, https://doi.org/10.3389/fmicb.2016.00196
  3. Endophytic bacteria as biocontrol agents against plant pathogens: current state-of-the-art vol.10, pp.6, 2016, https://doi.org/10.1007/s11816-016-0423-6