DOI QR코드

DOI QR Code

Rapid Detection Method for Fusaric Acid-producing Species of Fusarium by PCR

후자린산(Fusaric acid) 생성 Fusarium 종의 신속 검출 PCR

  • Lee, Theresa (Microbial Safety Team, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Kim, Sosoo (Microbial Safety Team, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Busman, Mark (Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, United States Department of Agriculture) ;
  • Proctor, Robert H. (Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, United States Department of Agriculture) ;
  • Ham, Hyeonhui (Microbial Safety Team, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Lee, Soohyung (Microbial Safety Team, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Hong, Sung Kee (Microbial Safety Team, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Ryu, Jae-Gee (Microbial Safety Team, National Institute of Agricultural Sciences, Rural Development Administration)
  • 이데레사 (국립농업과학원 유해생물팀) ;
  • 김소수 (국립농업과학원 유해생물팀) ;
  • ;
  • ;
  • 함현희 (국립농업과학원 유해생물팀) ;
  • 이수형 (국립농업과학원 유해생물팀) ;
  • 홍성기 (국립농업과학원 유해생물팀) ;
  • 류재기 (국립농업과학원 유해생물팀)
  • Received : 2015.10.20
  • Accepted : 2015.11.23
  • Published : 2015.12.31

Abstract

Fusaric acid is a mycotoxin produced by species of the fungus Fusarium and can act synergistically with other Fusarium toxins. In order to develop a specific detection method for fusaric acid-producing fungus, PCR primers were designed to amplify FUB10, a transcription factor gene in fusaric acid biosynthetic gene cluster. When PCR with Fub10-f and Fub10-r was performed, a single band (~550 bp) was amplified from F. oxysporum, F. proliferatum, F. verticillioides, F. anthophilum, F. bulbicola, F. circinatum, F. fujikuroi, F. redolens, F. sacchari, F. subglutinans, and F. thapsinum, all of which were known for fusaric acid production. Whereas the FUB10 specific band was not amplified from Fusarium species known to be trichothecene producer. Because production of fusaric acid can co-occur in species that also produce fumonisin mycotoxins, we developed a multiplex PCR assay using the FUB10 primers as well as primers for the fumonisin biosynthetic gene FUM1. The assay yielded amplicons from fumonisin producers such as F. proliferatum and F. verticillioides, allowing for the simultaneous detection of species with the genetic potential to produce both types of mycotoxins.

후자린산은 Fusarium이 생성하는 독소로서 다른 Fusarium 독소와 함께 독성을 증진시킬 수 있다. 후자린산 독소를 특이적으로 검출하기 위해 후자린산의 생합성유전자 중 전사인자인 FUB10을 증폭하는 프라이머를 제작하였다. Fub10-f와 Fub10-r 프라이머쌍으로 PCR을 수행했을 때, F. oxysporum, F. proliferatum, F. verticillioides, F. anthophilum, F. bulbicola, F. circinatum, F. fujikuroi, F. redolens, F. sacchari, F. subglutinans, F. thapsinum에서 약 550 bp의 단일밴드가 증폭되었으며 이들은 모두 후자린산을 생성하는 것으로 알려졌다. 반면 트라이코쎄신을 생성하는 종에서는 FUB10 특이 밴드가 증폭되지 않았다. 후자린산은 푸모니신을 생성하는 종에서 함께 생성될 수 있기 때문에 FUB10 프라이머와 푸모니신 생합성유전자인 FUM1 프라이머를 이용한 multiplex PCR을 수행하였다. 그 결과 푸모니신 생성종인 F. proliferatum과 F. verticillioides에서 밴드가 모두 증폭되었으며 이는 두 가지 독소를 생성할 수 있는 종에서 동시 검출이 가능함을 시사하였다.

Keywords

References

  1. Bacon, C. W., Porter, J. K. and Norred, W. P. 1995. Toxic interaction of fumonisin B1 and fusaric acid measured by injection into fertile chicken egg. Mycopathologia 129: 29-35. https://doi.org/10.1007/BF01139334
  2. Bacon, C. W., Porter, J. K., Norred, W. P. and Leslie, J. F. 1996. Production of fusaric acid by Fusarium species. Appl. Environ. Microbiol. 62: 4039-4043.
  3. Brown, D. W., Butchko, R. A. E., Busman, M. and Proctor, R. H. 2012. Identification of gene clusters associated with fusaric acid, fusarin, and perithecial pigment production in Fusarium verticillioides. Fungal Genet. Biol. 49: 521-532. https://doi.org/10.1016/j.fgb.2012.05.010
  4. Brown, D. W., Lee, S.-H., Kim, L.-H., Ryu, J.-G., Lee, S., Seo, Y., Kim, Y. H., Busman, M., Yun, S.-H., Proctor, R. H. and Lee, T. 2015. Identification of a 12-gene fusaric acid biosynthetic gene cluster in Fusarium species through comparative and functional genomics. Mol. Plant-Microbe Interact. 28: 319-332. https://doi.org/10.1094/MPMI-09-14-0264-R
  5. Desjardins, A. E. 2006. Fusarium mycotoxins: chemistry, genetics, and biology. The American Phytopathological Society, St. Paul, Minnesota, U.S.A. 260 pp.
  6. Gaumann, E. 1957. Fusaric acid as a wilt toxin. Phytopathology 47: 342-357.
  7. Liu, J., Bell, A. A., Stipanovic, R., Puckhaber, L. and Shim, W. 2011a. A polyketide synthase gene and an aspartate kinase like gene are required for the biosynthesis of fusaric acid in Fusarium f. sp. vasinfectum In Proceedings of the Beltwide Cotton Conferences. eds. by S. Boyd, M. Huffman and B. Robertson. Memphis, TN.
  8. Liu, J., Bell, A. A., Wheeler, M. H., Stipanovic, R. D. and Puckhaber, L. S. 2011b. Phylogeny and pathogenicity of Fusarium oxysporum isolates from cottonseed imported from Australia into California for dairy cattle feed. Can. J. Microbiol. 57: 874-886. https://doi.org/10.1139/w11-080
  9. Niehaus, E. M., von Bargen, K. W., Espino, J. J., Pfannmuller, A., Humpf, H. U. and Tudzynski, B. 2014. Characterization of the fusaric acid gene cluster in Fusarium fujikuroi. Appl. Microbiol. Biotechnol. 98: 1749-1762. https://doi.org/10.1007/s00253-013-5453-1
  10. Proctor, R. H., Plattner, R. D., Brown, D. W., Seo, J.-A. and Lee, Y.-W. 2004. Discontinuous distribution of fumonisin biosynthetic genes in the Gibberella fujikuroi species complex. Mycol. Res. 108: 815-822. https://doi.org/10.1017/S0953756204000577

Cited by

  1. Occurrence of Toxigenic Fusarium vorosii among Small Grain Cereals in Korea vol.32, pp.5, 2016, https://doi.org/10.5423/PPJ.OA.05.2016.0123
  2. Mycobiota of ground red pepper and their aflatoxigenic potential vol.54, pp.12, 2016, https://doi.org/10.1007/s12275-016-6480-2
  3. species complex vol.109, pp.6, 2017, https://doi.org/10.1080/00275514.2018.1425067