DOI QR코드

DOI QR Code

Impacts of OSTIA Sea Surface Temperature in Regional Ocean Data Assimilation System

지역 해양순환예측시스템에 대한 OSTIA 해수면온도 자료동화 효과에 관한 연구

  • Kim, Ji Hye (Korea Ocean Satellite Center, Korea Institute of Ocean Science & Technology) ;
  • Eom, Hyun-Min (Marine Meteorology Division, Korea Meteorological Administration) ;
  • Choi, Jong-Kuk (Korea Ocean Satellite Center, Korea Institute of Ocean Science & Technology) ;
  • Lee, Sang-Min (Forecast Research Division, National Institute of Meteorological Research) ;
  • Kim, Young-Ho (Climate Change & Coastal Disaster Research Department, Korea Institute of Ocean Science & Technology) ;
  • Chang, Pil-Hun (Global Environment System Research Division, National Institute of Meteorological Research)
  • 김지혜 (한국해양과학기술원 해양위성연구센터) ;
  • 엄현민 (기상청 해양기상과) ;
  • 최종국 (한국해양과학기술원 해양위성연구센터) ;
  • 이상민 (국립기상연구소 예보연구과) ;
  • 김영호 (한국해양과학기술원 물리연구본부) ;
  • 장필훈 (국립기상연구소 지구환경시스템연구과)
  • Received : 2014.07.02
  • Accepted : 2015.01.29
  • Published : 2015.02.28

Abstract

Impacts of Sea Surface Temperature (SST) assimilation to the prediction of upper ocean temperature is investigated by using a regional ocean forecasting system, in which 3-dimensional optimal interpolation is applied. In the present study, Sea Surface Temperature and Sea Ice Analysis (OSTIA) dataset is adopted for the daily SST assimilation. This study mainly compares two experimental results with (Exp. DA) and without data assimilation (Exp. NoDA). When comparing both results with OSTIA SST data during Sept. 2011, Exp. NoDA shows Root Mean Square Error (RMSE) of about $1.5^{\circ}C$ at 24, 48, 72 forecast hour. On the other hand, Exp. DA yields the relatively lower RMSE of below $0.8^{\circ}C$ at all forecast hour. In particular, RMSE from Exp. DA reaches $0.57^{\circ}C$ at 24 forecast hour, indicating that the assimilation of daily SST (i.e., OSTIA) improves the performance in the early SST prediction. Furthermore, reduction ratio of RMSE in the Exp. DA reaches over 60% in the Yellow and East seas. In order to examine impacts in the shallow costal region, the SST measured by eight moored buoys around Korean peninsula is compared with both experiments. Exp. DA reveals reduction ratio of RMSE over 70% in all season except for summer, showing the contribution of OSTIA assimilation to the short-range prediction in the coastal region. In addition, the effect of SST assimilation in the upper ocean temperature is examined by the comparison with Argo data in the East Sea. The comparison shows that RMSE from Exp. DA is reduced by $1.5^{\circ}C$ up to 100 m depth in winter where vertical mixing is strong. Thus, SST assimilation is found to be efficient also in the upper ocean prediction. However, the temperature below the mixed layer in winter reveals larger difference in Exp. DA, implying that SST assimilation has still a limitation to the prediction of ocean interior.

한반도 주변을 연구해역으로 하는 지역 해양순환예측시스템을 이용하여 관측기반의 분석 자료인 Operational Sea Surface Temperature and Sea Ice Analysis(OSTIA) 해수면 온도 자료의 동화를 통한 초기장 개선효과가 황해, 동중국해 그리고 동해의 해수면온도 예측결과에 미치는 영향을 조사하였다. 이를 위해서, 본 연구에서는 3차원 최적내삽법을 적용한 실험(Exp. DA)과 적용하지 않은 실험(Exp. NoDA)을 수행하여 각각의 실험결과를 관측자료와 비교 분석하였다. 2011년 9월 OSTIA 해수면 온도 자료와의 비교결과, Exp. NoDA는 24, 48, 72 예측시간에서 약 $1.5^{\circ}C$의 비교적 높은 Root Mean Square Error(RMSE)를 보였으나, Exp. DA에서는 모든 예측시간에서 $0.8^{\circ}C$ 이하의 상대적으로 낮은 RMSE가 나타났다. 특히, 초기 24시간 예측결과에서 RMSE는 $0.57^{\circ}C$를 보여 Exp. NoDA에 비해 예측성능이 크게 향상된 결과를 보였다. 해역별로는 황해와 동해에서 자료동화 적용 시, 60% 이상의 높은 RMSE 감소율이 나타났다. 기상청 8개 지점 연안 계류부이의 표층수온 자료를 이용하여 자료동화 효과를 계절적으로 살펴본 결과, 전반적으로 여름철을 제외한 모든 계절에서 자료동화 적용 후 70% 이상의 높은 RMSE 감소율을 보여 한반도 연안 표층수온의 단기 예측성이 향상됨을 확인하였다. 또한, 해수면 온도 자료의 동화로 인한 해양상층부의 수온구조 변화를 살펴보기 위해 동해를 대표해역으로 하여 Argo 수온 프로파일 자료와 실험결과를 비교하였다. 특히 연직 혼합이 강한 겨울철 해양 상층부(<100 m) 경우 Exp. DA의 RMSE가 Exp. NoDA에 비해 약 $1.5^{\circ}C$ 감소한 결과를 보여 해수면 온도의 자료동화 효과가 해양상층부의 수온 예측성 향상에 기여함을 확인하였다. 하지만, 겨울철 혼합층 아래에서는 Argo 관측 대비 수온 오차가 오히려 증가한 해역도 존재하여 해수면 온도 자료동화의 한계성도 나타났다.

Keywords

References

  1. Arakawa, A. and V. R. Lamb, 1977. Computational Design of the Basic Dynamical Processes of the UCLA General Circulation Model. General Circulation Models of the Atmosphere, J. Chang, Ed., Academic Press, Methods in Computational Physics, 17:173-265.
  2. Beckmann, A., and D. B. Haidvogel, 1993. Numerical simulation of flow around a tall isolated seamount. Part I: Problem formulation and model accuracy. J. Phys. Oceanogr., 23: 1736-1753. https://doi.org/10.1175/1520-0485(1993)023<1736:NSOFAA>2.0.CO;2
  3. Chang, P.-H., A. Isobe, K.-R. Kang, S.-B. Ryoo, H.-S. Kang, and Y.-H. Kim, 2014. Summer behavior of the Changjiang diluted water to the East/Japan Sea: A modeling study in 2003. Cont. Shelf. Res., 81: 7-18. https://doi.org/10.1016/j.csr.2014.03.007
  4. Donlon, C. J., Matthew M., John S., Jonah R.-J., 2012. The Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) system. Remote Sens. Environ., 116: 140-158. https://doi.org/10.1016/j.rse.2010.10.017
  5. Egbert, G.D., and S.Y. Erofeeva, 2002. Efficient inverse modeling of barotropic ocean tides. J. Atmos. Oceanic Technol., 19(2): 183-204. https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2
  6. Eom, H-M., J.H. Kim, P.-H. Chang, S.-B. Kang, S.-B. Ryoo, Y.-J. Choi, 2013. Regional Ocean Forecasting System in KMA. NIMR (National Institute of Meteorological Research) Technical Note, 30 pp.
  7. Fairall, C. W., E. F. Bradley, D. P. Rogers, J. B. Edson, and G. S Young, 1996. Bulk parameterization of air-sea fluxes in TOGA COARE. J. Geophys. Res., 101: 3747-3767. https://doi.org/10.1029/95JC03205
  8. Fu, W., J. She, S. Zhuang, 2011. Application of an Ensemble Optimal Interpolation in a North/Baltic Sea model: Assimilating temperature and salinity profiles. Ocean Modelling, 40: 227-245. https://doi.org/10.1016/j.ocemod.2011.09.004
  9. Gao, Y., Arimoto, R., Duce, R. A., Lee, D. S., Zhou, M., 1992. Input of atmospheric trace elements and mineral matter to the Yellow Sea during the spring of a low-dust year. Journal of Geophysical Research, 97: 3767-3777. https://doi.org/10.1029/91JD02686
  10. Gaspari, G., Cohn, S.E., 1999. Construction of correlation functions in two and three dimensions. Q. J. Roy. Met. Soc., 125: 723-757. https://doi.org/10.1002/qj.49712555417
  11. Hamill, T.M., Whitaker, J.S., Snyder, C., 2001. Distance-dependent filtering of background error covariances in an ensemble Kalman Filter. Mon. Weath. Rev., 129: 2776-2790. https://doi.org/10.1175/1520-0493(2001)129<2776:DDFOBE>2.0.CO;2
  12. Houtekamer, P.L., Mitchell, H.L., 2001. A sequential ensemble Kalman filter for atmospheric data assimilation. Mon. Weath. Rev., 129: 123-137. https://doi.org/10.1175/1520-0493(2001)129<0123:ASEKFF>2.0.CO;2
  13. Huang, Y., W.F. Yang and L. Chen, 2010. Water resources change in response to climate change in Changjiang River basin. Hydrol. Earth Syst. Sci. Discuss., 7: 3159-3188. https://doi.org/10.5194/hessd-7-3159-2010
  14. Hunt, B.R., Kostelich, E.J., Szunyogh, I., 2007. Efficient data assimilation for spatiotemporal chaos: a local ensemble transform kalman filter. Physica D, 230: 112-126. https://doi.org/10.1016/j.physd.2006.11.008
  15. Jonah R.-J., E. Fiedler, M. Martin, 2011. Description and assessment of the OSTIA reanalysis, Forecasting Research Technical Report 561.
  16. Jones, C., B. Marcpherson, 2012. The benefit of continuous data assimilation in a regional NWP model. Forecasting Research Technical Report 566.
  17. Kantha, L.K., Choi, J.K., Schaudt, K.J., Cooper, C.K., 2005. A regional data-assimilative model for operational use in the Gulf of Mexico. Sturges, W., Lugo-Fernandez, A. (Eds.), Circulation in the Gulf of Mexico: Observations and Models, 161: 165-180. https://doi.org/10.1029/161GM14
  18. Kim, C.H., Kim, K., 1983. Characteristics and origin of the cold water mass along the east coast of Korea. J. Oceanol. Soc. Korea, 18: 73-83.
  19. Kim, Y.-G., K. Kim 1999. Intermediate waters in the East/Japan Sea. J. Oceanogr., 55: 123-132. https://doi.org/10.1023/A:1007877610531
  20. Kim, Y.H., S.J. Lyu, B.-J. Choi, Y.-K. Cho and Y.-G. Kim, 2008. Implementation of the Ensemble Kalman Filter to a Double Gyre Ocean and Sensitivity Test using Twin Experiments, Ocean and Polar Research, 30(2): 129-140. https://doi.org/10.4217/OPR.2008.30.2.129
  21. Large, W.G., J.C. McWilliams, and S.C. Doney, 1994. Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32: 363-403. https://doi.org/10.1029/94RG01872
  22. Larsen, J., J.L. Høyer, and J. She, 2007. Validation of a hybrid optimal interpolation and Kalman filter scheme for sea surface temperature assimilation. J. Mar. Syst., 65: 122-133. https://doi.org/10.1016/j.jmarsys.2005.09.013
  23. Lazarus, S.M. and M.E. Splitt, 2010. Evaluation of Data Reduction Algorithms for Real-Time Analysis. Wea. Forecasting, 25: 837-851. https://doi.org/10.1175/2010WAF2222296.1
  24. Lee, H.J., J.-H. Yoon, H. Kawamura, and H.-W. Kang, 2003. Comparison of RIAMOM and MOM in Modeling the East Sea/Japan Sea Circulation. Ocean Polar Res., 25(3): 287-302. https://doi.org/10.4217/OPR.2003.25.3.287
  25. Li, Y., X. Gao, X. Zhang, and Y. Wang, 2010. Impact of Runoff on Salt Intrusion of Yangtze Estuary. Coast. Eng., 32: 1-6.
  26. Malanotte-Rizzoli, P., 1996. Modern Approaches to Data Assimilation in Ocean Modeling. Elsevier, 1-455.
  27. Manda, A.N. Hirose, and T. Yanagi, 2004. Feasible method for the assimilation of satellite-derived SST with an Ocean Circulation Model. J. Atmos. Oceanic Technol., 22: 746-756.
  28. Mellor, G.L. and T. Yamada, 1982. Developement of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 20: 851-875. https://doi.org/10.1029/RG020i004p00851
  29. Minnett, P. and A. Kaiser-Weiss, 2012. Near-surface oceanic temperature gradients. GHRSST discussion document.
  30. Moon, J.-H., N. Hirose, and J.-H. Yoon, 2009. Comparison of wind and tidal contributions to seasonal circulation of the Yellow Sea. Journal of Geophysical Research, 114: C808016.
  31. National Institute of Meteorological Research (NIMR), 2013. Research for the Meteorological and Earthquake Observation Technology and Its Application (II). National Institute of Meteorological Research, Seoul, 204 pp.
  32. Ochotta T., C. Gebhardt, V. Bondarenko, D. Saupe, W. Wergen, 2007. On Thinning Methods for Data Assimilation of Satellite Observations. 23. Intl. Conf. on IIPS.
  33. Oke, P.R., J.S. Allen, R.N. Miller, G.D. Egbert, and P.M. Kosro, 2002. Assimilation of surface velocity data into a primitive equation coastal ocean model. J. Geophys. Res., 107: 3122.
  34. Pacanowsky, R.C., S.G.H. Philander, 1981. Parameterization of vertical mixing in numerical models of tropical oceans. J. Phys. Oceanogr., 11: 1443-1451. https://doi.org/10.1175/1520-0485(1981)011<1443:POVMIN>2.0.CO;2
  35. Price, J.F., 1981. Upper ocean response to hurricane. J. Phys. Oceanogr., 11: 153-175. https://doi.org/10.1175/1520-0485(1981)011<0153:UORTAH>2.0.CO;2
  36. Ramachandran, R., Xiang L., Sunil M., Sara G., 2005. Intelligent Thinning Algorithm for Earth System Numerical Model Research and Application.
  37. Shay, L.K., P.G. Black, A.J. Mariano, J.D. Hawkins, L. Russell, 1992. Upper ocean response to hurricane Gilber. J. Geophys. Res. Lett., 97: 227-248.
  38. Shchepetkin, A.F. and J.C. McWilliams, 1998. Quasi-monotone advection schemes based on explicit locally adaptive dissipation. Monthly Weather Rev., 126: 1541-1580. https://doi.org/10.1175/1520-0493(1998)126<1541:QMASBO>2.0.CO;2
  39. Shchepetkin, A.F. and J.C. McWilliams, 2005. The regional ocean modeling system (ROMS): A split-explicit, free-surface, topography - following - coordinate oceanic model. Ocean Modeling, 9: 347-404. https://doi.org/10.1016/j.ocemod.2004.08.002
  40. Shu, Y., J. Zhu, D. Wang, C. Yan, X. Xiao, 2009. Performance of four sea surface temperature assimilation schemes in the South China Sea. Continental Shelf Research, 29: 1489-1501. https://doi.org/10.1016/j.csr.2009.03.016
  41. Song, Y. and D. B. Haidvogel, 1994. A semi-implicit ocean circulation model using a generalized topography-following coordinate system. J. Comp. Phys., 115(1): 228-244. https://doi.org/10.1006/jcph.1994.1189
  42. Song, Y.T., D. Wright, 1998. A general pressure gradient formation for ocean models. Part II: Energy, momentum, and bottom torque consistency. Mon. Weather Rev., 126(12): 3231-3247. https://doi.org/10.1175/1520-0493(1998)126<3231:AGPGFF>2.0.CO;2
  43. Stark, J.D., C.J. Donlon, M.J. Martin, and M.E. McCulloch, 2007. An operational, high resolution, real time, global sea surface temperature analysis system. OCEANS 2007.
  44. Thacker, W.C. and R.B. Long, 1988. Fitting dynamics to data. J. Geophys. Res., 93: 1227-1240. https://doi.org/10.1029/JC093iC02p01227
  45. Twigt, D.J., E.D. De Goede, E.J.O. Schrama, and H. Gerritsen, 2007. Analysis and modeling of the seasonal South China Sea temperature cycle using remote sensing. Ocean Dynamics, 57: 467-484. https://doi.org/10.1007/s10236-007-0123-4
  46. Vorosmarty, C.J., B. Fekete, and B.A. Tucker. 1996. River Discharge Database, Version 1.0 (RivDIS v1.0), Volumes 0 through 6. A contribution to IHP-V Theme 1. Technical Documents in Hydrology Series. UNESCO, Paris.
  47. Wang, D.-P., L.-Y. Oey, T. Ezer, P. Hamilton, 2003. Nearsurface currents in Desoto Canyon. J. Phys. Oceanogr., 33: 313-326. https://doi.org/10.1175/1520-0485(2003)033<0313:NSCIDC>2.0.CO;2
  48. Xie, J. and J. Zhu, 2010. Ensemble optimal interpolation schemes for assimilating Argo profiles into a hybrid coordinate ocean model. Ocean Modelling, 33: 283-298. https://doi.org/10.1016/j.ocemod.2010.03.002
  49. Yang, J.Y., 2006. Path variability of the Changjiang Diluited Water in summer. Korea. Ph.D. Thesis, Seoul National University, Seoul, 109pp.
  50. Yoon, J.-H., 1982a. Numerical experiment on the circulation in the Japan Sea. Part II. Influence of seasonal variations in atmospheric conditions on the Tsushima Current. J. Oceanogr. Soc. Japan, 38: 81-94. https://doi.org/10.1007/BF02110294
  51. Yoon, J.-H., 1982b. Numerical experiment on the circulation in the Japan Sea. Part III. Mechanism of the nearshore branch of the Tsushima Current. J. Oceanogr. Soc. Japan, 38: 125-130. https://doi.org/10.1007/BF02110283
  52. Yoon. J.-H., H. Kawamura, 2002. The formation and circulation of the intermediate water in the Japan Sean. J. Oceanogr., 58: 197-211. https://doi.org/10.1023/A:1015893104998
  53. Yoshikawa, Y., T. Awaji, K. Akitomo, 1999. Formation and circulation processes of intermediate water in the Japan Sea. J. Phys. Oceanogr., 29: 1701-1722. https://doi.org/10.1175/1520-0485(1999)029<1701:FACPOI>2.0.CO;2
  54. You, S.H., H.-M. Eom and S.B. Ryoo, 2011. Numerical study of typhoon effects on the Changjiang Diluted Water using an operational ocean forecasting system. Journal of Coastal Research, SI64: 1927-1930.
  55. Zavodsky, B., Steven, L., Xiang, L., Mike, L., Michael, S., Rahul, R., Sunil, M., Sara, G., William, L., 2008. Intelligent Data Thinning Algorithms for Satellite Imagery. IGARSS 3: 644-647.

Cited by

  1. A Study on Improving the Prediction Accuracy of a Typhoon Disaster Prevention Model Part I: Sensitivity of the WRF Model to High-Resolution SST Data and Meteorological Data Assimilation vol.35, pp.3, 2019, https://doi.org/10.5572/kosae.2019.35.3.303