DOI QR코드

DOI QR Code

Synergistic Anti-inflammatory Effect of Rosmarinic Acid and Luteolin in Lipopolysaccharide-Stimulated RAW264.7 Macrophage Cells

Rosmarinic acid와 luteolin의 항염증에 대한 상승효과

  • Received : 2014.11.25
  • Accepted : 2014.12.21
  • Published : 2015.02.28

Abstract

The aim of this study was to investigate the synergistic anti-inflammatory effect of rosmarinic acid (RA) and luteolin from perilla (Perilla frutescens L.) leaves in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. A combination of RA and luteolin more strongly inhibited the production of nitric oxide (NO), inducible NOS (iNOS), prostaglandin $E_2$ ($PGE_2$), and COX-2 than higher concentrations of RA or luteolin alone in LPS-stimulated RAW264.7 macrophages. The combined RA and luteolin synergistically inhibited the production of pro-inflammatory cytokines, such as tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), interleukin-6 (IL-6), and interleukin-$1{\beta}$ (IL-$1{\beta}$), in LPS-stimulated RAW264.7 macrophages. Furthermore, combined RA and luteolin more strongly suppressed NF-${\kappa}B$ activation than RA or luteolin alone, by inhibiting the degradation of inhibitor of NF-${\kappa}B(I{\kappa}B)$-${\alpha}$ and nuclear translocation of the p65 subunit of NF-${\kappa}B$ in LPS-stimulated RAW264.7 macrophages. Collectively, these results suggest that RA and luteolin in combination exhibit synergistic effects in suppression of LPS-induced inflammation in RAW264.7 macrophages.

본 연구에서는 들깨 유래 기능성 물질인 rosmarinic acid (RA)와 luteolin이 RAW264.7 세포에서 항염증작용에 대한 상승 효과가 있는지 알아보고자 하였다. 그 결과 RAW264.7 세포에 RA($50{\mu}M$)와 luteolin ($1{\mu}M$)을 동시에 처리하였을 경우 염증 매개인자인 NO, iNOS, $PGE_2$, COX-2의 생성을 RA ($100{\mu}M$)와 luteolin ($2{\mu}M$)을 각각 처리하였을 때 보다 더 뛰어나게 억제하였다. 또한 RA ($50{\mu}M$)와 luteolin ($1{\mu}M$)을 동시에 처리하였을 경우 TNF-${\alpha}$, IL-6, IL-$1{\beta}$ 같은 염증성 사이토카인의 생성량을 RA ($100{\mu}M$)와 luteolin ($2{\mu}M$)을 각각 처리하였을 때 보다 더 뛰어나게 억제하는 것을 확인하였다. 그리고 RA ($50{\mu}M$)와 luteolin ($1{\mu}M$)을 동시에 처리하였을 경우 RA ($100{\mu}M$)와 luteolin ($2{\mu}M$)을 각각 처리하였을 때 보다 NF-${\kappa}B$의 subunit인 p65의 translocation과 $I{\kappa}B$-${\alpha}$의 degradation을 더 뛰어나게 억제하는 것을 볼 수 있어 두 화합물 간의 상승작용이 뚜렷함을 확인 할 수 있었고, RA와 luteolin 두 화합물을 동시에 처리할 경우 염증관련 질환 치료에 유용하게 활용될 수 있을 것으로 판단된다.

Keywords

References

  1. Sirisinha S. Insight into the mechanisms regulating immune homeostasis in health and disease. Asian Pac. J. Allergy 29: 1-14 (2011)
  2. Mok JY, Jeong SI, Kim JH, Jang SI. Synergic effect of quercetin and astragalin from Mulberry leaves on anti-inflammation. Korean J. Orient. Physiol. Pathol. 25: 830-836 (2011)
  3. Shin JS, Park YM, Choi JH, Park HJ, Shin MC, Lee YS, Lee KT. Sulfuretin isolated from heartwood of Rhus verniciflua inhibits LPS-induced inducible nitric oxide synthase, cyclooxygenase- 2, and pro-inflammatory cytokines expression via the down-regulation of NF-kappaB in RAW 264.7 murine macrophage cells. Int. Immunopharmacol. 10: 943-950 (2010) https://doi.org/10.1016/j.intimp.2010.05.007
  4. Cho BO, Ryu HW, So Y, Lee CW, Jin CH, Yook HS, Jeong YW, Park JC, Jeong IY. Anti-inflammatory effect of mangostenone F in lipopolysaccharide-stimulated RAW264.7 macrophages by suppressing NF-${\kappa}B$ and MAPK activation. Biomol. Ther. 22: 288- 294 (2014) https://doi.org/10.4062/biomolther.2014.052
  5. Guo S, Qiu P, Xu G, Wu X, Dong P, Yang G, Zheng J, McClements DJ, Xiao H. Synergistic anti-inflammatory effects of nobiletin and sulforaphane in lipopolysaccharide-stimulated RAW 264.7 cells. J. Agr. Food Chem. 60: 2157-2164 (2012) https://doi.org/10.1021/jf300129t
  6. Jeon YJ, Song KS, Han HJ, Park SH, Chang W, Lee MY. Rosmarinic acid inhibits chemical hypoxia-induced cytotoxicity in primary cultured rat hepatocytes. Arch. Pharm. Res. 37: 907-915 (2014) https://doi.org/10.1007/s12272-013-0234-z
  7. Ojha D, Mukherjee H, Mondal S, Jena A, Dwivedi VP, Mondal KC, Malhotra B, Samanta A, Chattopadhyay D. Anti-inflammatory activity of Odina wodier Roxb, an Indian folk remedy, through inhibition of toll-like receptor 4 signaling pathway. PLoS One. 9: e104939 (2014) https://doi.org/10.1371/journal.pone.0104939
  8. Kawai T, Akira S. TLR signaling. Cell Death Differ. 13: 816-825 (2006) https://doi.org/10.1038/sj.cdd.4401850
  9. Lee Y, Song B, Ju J. Anti-inflammatory activity of Perilla frutescens Britton seed in RAW 264.7 macrophages and an ulcerative colitis mouse model. Korean J. Food Sci. Technol. 46: 61-67 (2014) https://doi.org/10.9721/KJFST.2014.46.1.61
  10. Jeong SI, Kim HS, Jeon IH, Kang HJ, Mok JY, Cheon CJ, Yu HH, Jang SI. Antioxidant and anti-inflammatory effects of ethanol extracts from Perilla frutescens. Korean J. Food Sci. Technol. 46: 87-93 (2014) https://doi.org/10.9721/KJFST.2014.46.1.87
  11. Cho BO, Park HY, Ryu HW, Jin CH, Choi DS, Kim DS, Lim ST, Seo KI, Byun MW, Jeong IY. Protective effect of Perilla frutescens cv. chookyoupjaso mutant water extract against oxidative injury in vitro and in vivo. Food Sci. Biotechnol. 20: 1705- 1711 (2011) https://doi.org/10.1007/s10068-011-0235-y
  12. Huang N, Hauck C, Yum MY, Rizshsky L, Widrlechner MP, McCoy JA, Murphy PA, Dixon PM, Nikolau BJ, Birt DF. Rosmarinic acid in Prunella vulgaris ethanol extract inhibits lipopolysaccharide-induced prostaglandin E2 and nitric oxide in RAW 264.7 mouse macrophages. J. Agr. Food Chem. 57: 10579- 10589 (2009) https://doi.org/10.1021/jf9023728
  13. Zhu F, Asada T, Sato A, Koi Y, Nishiwaki H, Tamura H. Rosmarinic acid extract for antioxidant, antiallergic, and $\alpha$-glucosidase inhibitory activities, isolated by supramolecular technique and solvent extraction from Perilla leaves. J. Agr. Food Chem. 62: 885-892 (2014) https://doi.org/10.1021/jf404318j
  14. Osakabe N, Yasuda A, Natsume M, Sanbongi C, Kato Y, Osawa T, Yoshikawa T. Rosmarinic acid, a major polyphenolic component of Perilla frutescens, reduces lipopolysaccharide (LPS)- induced liver injury in D-galactosamine (D-GalN)-sensitized mice. Free Radical Biol. Med. 33: 798-806 (2002) https://doi.org/10.1016/S0891-5849(02)00970-X
  15. DomitroviR, Skoda M, Vasiljev Marchesi V, Cvijanovi O, Pernjak Pugel E, Stefan MB. Rosmarinic acid ameliorates acute liver damage and fibrogenesis in carbon tetrachloride-intoxicated mice. Food Chem. Toxicol. 51: 370-378 (2013) https://doi.org/10.1016/j.fct.2012.10.021
  16. Park CM, Song YS. Luteolin and luteolin-7-O-glucoside inhibit lipopolysaccharide-induced inflammatory responses through modulation of NF-${\kappa}B$/AP-1/PI3K-Akt signaling cascades in RAW 264.7 cells. Nutr. Res. Pract. 7: 423-429 (2013) https://doi.org/10.4162/nrp.2013.7.6.423
  17. Xagorari A, Roussos C, Papapetropoulos A. Inhibition of LPSstimulated pathways in macrophages by the flavonoid luteolin. Br. J. Pharmacol. 136: 1058-1064 (2002) https://doi.org/10.1038/sj.bjp.0704803
  18. Jeon IH, Kim HS, Kang HJ, Lee HS, Jeong SI, Kim SJ, Jang SI. Anti-inflammatory and antipruritic effects of luteolin from Perilla (P. frutescens L.) leaves. Molecules 19: 6941-6951 (2014) https://doi.org/10.3390/molecules19066941
  19. Ueda H, Yamazaki C, Yamazaki M. Luteolin as an anti-inflammatory and anti-allergic constituent of Perilla frutescens. Biol. Pharm. Bull. 25: 1197-1202 (2002) https://doi.org/10.1248/bpb.25.1197
  20. Cai Q, Rahn RO, Zhang R. Dietary flavonoids, quercetin, luteolin and genistein, reduce oxidative DNA damage and lipid peroxidation and quench free radicals. Cancer Lett. 119: 99-107 (1997) https://doi.org/10.1016/S0304-3835(97)00261-9
  21. Nazari QA, Kume T, Takada-Takatori Y, Izumi Y, Akaike A. Protective effect of luteolin on an oxidative-stress model induced by microinjection of sodium nitroprusside in mice. J. Pharmacol. Sci. 122: 109-117 (2013) https://doi.org/10.1254/jphs.13019FP
  22. Gao Y, Jiang W, Dong C, Li C, Fu X, Min L, Tian J, Jin H, Shen J. Anti-inflammatory effects of sophocarpine in LPS-induced RAW 264.7 cells via NF-${\kappa}B$ and MAPKs signaling pathways. Toxicol. In Vitro. 26: 1-6 (2012) https://doi.org/10.1016/j.tiv.2011.09.019
  23. Park HY, Kim GY, Hyun JW, Hwang HJ, Kim ND, Kim BW, Choi YH. 7,8-Dihydroxyflavone exhibits anti-inflammatory properties by downregulating the NF-${\kappa}B$ and MAPK signaling pathways in lipopolysaccharide-treated RAW264.7 cells. Int. J. Mol. Med. 29: 1146-1152 (2012)
  24. Park CM, Jin KS, Lee YW, Song YS. Luteolin and chicoric acid synergistically inhibited inflammatory responses via inactivation of PI3K-Akt pathway and impairment of NF-${\kappa}B4 translocation in LPS stimulated RAW 264.7 cells. Eur. J. Pharmacol. 660: 454- 459 (2011) https://doi.org/10.1016/j.ejphar.2011.04.007
  25. Lim HJ, Woo KW, Lee KR, Lee SK, Kim HP. Inhibition of proinflammatory cytokine generation in lung inflammation by the leaves of Perilla frutescens and its constituents. Biomol. Ther. 22: 62-67 (2014) https://doi.org/10.4062/biomolther.2013.088
  26. Kim JY, Jung KS, Jeong HG. Suppressive effects of the kahweol and cafestol on cyclooxygenase-2 expression in macrophages. FEBS Lett. 569: 321-326 (2004) https://doi.org/10.1016/j.febslet.2004.05.070
  27. Qiao S, Li W, Tsubouchi R, Haneda M, Murakami K, Takeuchi F, Nisimoto Y, Yoshino M. Rosmarinic acid inhibits the formation of reactive oxygen and nitrogen species in RAW264.7 macrophages. Free Radical Res. 39: 995-1003 (2005) https://doi.org/10.1080/10715760500231836
  28. Chen CY, Peng WH, Tsai KD, Hsu SL. Luteolin suppresses inflammation-associated gene expression by blocking NF-kappaB and AP-1 activation pathway in mouse alveolar macrophages. Life Sci. 81: 1602-1614 (2007) https://doi.org/10.1016/j.lfs.2007.09.028
  29. De Nardin E. The role of inflammatory and immunological mediators in periodontitis and cardiovascular disease. Ann. Periodontol. 6: 30-40 (2001) https://doi.org/10.1902/annals.2001.6.1.30
  30. Seo MJ, Kang BW, Kim MJ, Lee HH, Seo KI, Kim KH, Jeong YK. The effect of cordycepin on the production of pro-inflammatory cytokines in mouse peritoneal macrophages. Korean J. Food Sci. Technol. 46: 68-72 (2014) https://doi.org/10.9721/KJFST.2014.46.1.68
  31. Kim SJ, Um JY, Kim SH, Hong SH. Protective effect of rosmarinic acid is through regulation of inflammatory cytokine in cadmium-induced ototoxicity. Am. J. Chin. Med. 41: 391-404 (2013) https://doi.org/10.1142/S0192415X13500298
  32. Wu W, Li D, Zong Y, Zhu H, Pan D, Xu T, Wang T, Wang T. Luteolin inhibits inflammatory responses via p38/MK2/TTP-mediated mRNA stability. Molecules 18: 8083-8094 (2013) https://doi.org/10.3390/molecules18078083
  33. Oeckinghaus A, Hayden MS, Ghosh S. Crosstalk in NF-${\kappa}B$ signaling pathways. Nat. Immunol. 12: 695-708 (2011)
  34. Lee JW, Bae CJ, Choi YJ, Kim SI, Kim NH, Lee HJ, Kim SS, Kwon YS, Chun W. 3,4,5-Trihydroxycinnamic acid inhibits LPSinduced iNOS expression by suppressing NF-${\kappa}B$ activation in BV2 microglial cells. Korean J. Physiol. Pharmacol. 16: 107-112 (2012) https://doi.org/10.4196/kjpp.2012.16.2.107

Cited by

  1. L. improve the oxidative and inflammatory states of rats with adjuvant-induced arthritis vol.9, pp.4, 2018, https://doi.org/10.1039/C7FO01928A