DOI QR코드

DOI QR Code

Modeling the Hall-Petch Relation of Ni-Base Polycrystalline Superalloys Using Strain-Gradient Crystal Plasticity Finite Element Method

변형구배 결정소성 유한요소해석법을 이용한 니켈기 다결정 합금의 Hall-Petch 관계 모델링

  • Choi, Yoon Suk (School of Materials Science and Engineering, Pusan National University) ;
  • Cho, Kyung-Mox (School of Materials Science and Engineering, Pusan National University) ;
  • Nam, Dae-Geun (Korea Institute of Industrial Technology) ;
  • Choi, Il-Dong (Division of Marine Equipment Engineering, Korea Maritime and Ocean University)
  • 최윤석 (부산대학교 공과대학 재료공학부) ;
  • 조경목 (부산대학교 공과대학 재료공학부) ;
  • 남대근 (한국생산기술연구원 동남권 지역본부) ;
  • 최일동 (한국해양대학교 공과대학 조선기자재공학부)
  • Received : 2014.12.22
  • Accepted : 2015.01.20
  • Published : 2015.02.27

Abstract

A strain-gradient crystal plasticity constitutive model was developed in order to predict the Hall-Petch behavior of a Ni-base polycrystalline superalloy. The constitutive model involves statistically stored dislocation and geometrically necessary dislocation densities, which were incorporated into the Bailey-Hirsch type flow stress equation with six strength interaction coefficients. A strain-gradient term (called slip-system lattice incompatibility) developed by Acharya was used to calculate the geometrically necessary dislocation density. The description of Kocks-Argon-Ashby type thermally activated strain rate was also used to represent the shear rate of an individual slip system. The constitutive model was implemented in a user material subroutine for crystal plasticity finite element method simulations. The grain size dependence of the flow stress (viz., the Hall-Petch behavior) was predicted for a Ni-base polycrystalline superalloy NIMONIC PE16. Simulation results showed that the present constitutive model fairly reasonably predicts 0.2%-offset yield stresses in a limited range of the grain size.

Keywords

References

  1. Z. Zhao, M. Ramesh, D. Raabe, A. M. Cuitino and R. Radovitzky, Int. J. Plasticity, 24, 2278 (2008). https://doi.org/10.1016/j.ijplas.2008.01.002
  2. E. Heripre, M. Dexet, J. Crepin, L. Gelebart, A. Roos, M. Bornert and D. Caldemaison, Int. J. Plasticity, 23, 1512 (2007). https://doi.org/10.1016/j.ijplas.2007.01.009
  3. A. Musienko, A. Tatschl, K. Schmidegg, O. Kolednik, R. Pippan and G. Cailetaud, Acta Mater., 55, 4121 (2007). https://doi.org/10.1016/j.actamat.2007.01.053
  4. S. R. Kalidindi, A. Bhattacharyya and R. D. Doherty, Proc. R. Soc. Lond. A, 460, 1935 (2004).
  5. C. Rehrl, B. Volker, S. Kleber, T. Antretter and R. Pippan, Acta Mater., 60, 2379 (2012). https://doi.org/10.1016/j.actamat.2011.12.052
  6. Y. Yang, L. Wang, T. R. Bieler, P. Eisenlohr and M. A. Crimp, Metall. Mater. Trans. A, 42, 636 (2011). https://doi.org/10.1007/s11661-010-0475-0
  7. D. Raabe, M. Sachtleber, Z. Zhao, F. Roters and S. Zaefferer, Acta Mater., 49, 3433 (2001)1. https://doi.org/10.1016/S1359-6454(01)00242-7
  8. D. Pyle, J. Lu, D. Littlewood and A. Maniatty, Comp. Mechanics, 52, 135 (2012).
  9. H. Lim, M. G. Lee, J. K. Kim, B. L. Adams and R. H. Wagoner, Int. J. Plasticity, 27, 1328 (2011). https://doi.org/10.1016/j.ijplas.2011.03.001
  10. F. Roters, P. Eisenlohr, L. Hantcherli, D. D. Tjahjanto, T. R. Bieler and D. Raabe, Acta Mater., 58, 1152 (2011).
  11. A. C. Lewis, M. A. Siddiq Qidwai and A. B. Geltmacher, Metall. Mater. Trans. A, 41, 2522 (2010). https://doi.org/10.1007/s11661-010-0284-5
  12. M. A. Siddiq Qidwai, A. C. Lewis and A. B. Geltmacher, Acta Mater., 57, 4233 (2009). https://doi.org/10.1016/j.actamat.2009.05.021
  13. T. R. Bieler, P. Eisenlohr, F. Roters, D. Kumar, D. E. Mason, M. A. Crimp and D. Raabe, Int. J. Plasticity, 25, 1655 (2009). https://doi.org/10.1016/j.ijplas.2008.09.002
  14. W. Ludwig, A. King, P. Reischig, M. Herbiga, E. M. Lauridsend, S. Schmidt, H. Proudhon, S. Forest, P. Cloetens, S. Rolland du Roscoat, J. Y. Buffière, T. J. Marrow and H. F. Poulsen, Mat. Sci. Eng. A, 524, 69 (2009). https://doi.org/10.1016/j.msea.2009.04.009
  15. A. Zeghadi, S. Forest, A. -F. Gourgues and O. Bouaziz, Phil. Mag., 87, 1425 (2007). https://doi.org/10.1080/14786430601009517
  16. O. Diard, S. Leclercq, G. Rousselier and G. Cailletaud, Int. J. Plasticity, 21, 691 (2005). https://doi.org/10.1016/j.ijplas.2004.05.017
  17. D. Chandrasekaran and M. Nygards, Mat. Sci. Eng. A, 365, 191 (2004). https://doi.org/10.1016/j.msea.2003.09.027
  18. O. Diard, S. Leclercq, G. Rousselier and G. Cailletaud, Comp. Mat. Sci., 25, 73 (2002). https://doi.org/10.1016/S0927-0256(02)00251-3
  19. F. Barbe, L. Decker, D. Jeulin and G. Cailletaud, Int. J. Plasticity, 17, 513 (2001). https://doi.org/10.1016/S0749-6419(00)00061-9
  20. J. Harder: Int. J. Plasticity, 15, 605 (1999). https://doi.org/10.1016/S0749-6419(99)00002-9
  21. R. Becker and O. Richmond, Modelling Simul. Mat. Sci. Eng., 2, 439 (1994). https://doi.org/10.1088/0965-0393/2/3A/002
  22. E. Marin and P. R. Dawson, Appl. Mech. Eng., 165, 1 (1998). https://doi.org/10.1016/S0045-7825(98)00034-6
  23. A. Acharya and J. L. Bassani, J. Mech. Phys. Solids, 48, 1565 (2000). https://doi.org/10.1016/S0022-5096(99)00075-7
  24. A. Acharya and A. J. Beaudoin, J. Mech. Phys. Solids, 48, 2213 (2000). https://doi.org/10.1016/S0022-5096(00)00013-2
  25. A. J. Beaudoin, A. Acharya, S. R. Chen, D. A. Korzekwa and M. G. Stout, Acta Mater., 48, 3409 (2000). https://doi.org/10.1016/S1359-6454(00)00136-1
  26. A. J. Beaudoin and A. Acharya, Mat. Sci. Eng. A, 309- 310, 411 (2001). https://doi.org/10.1016/S0921-5093(00)01620-8
  27. A. Ma, F. Roters and D. Raabe, Acta Mater., 54, 2169 (2006). https://doi.org/10.1016/j.actamat.2006.01.005
  28. M. Kuroda and V. Tvergaard, J. Mech. Phys. Solids, 54, 1789 (2006). https://doi.org/10.1016/j.jmps.2006.04.002
  29. F. T. Meissonnier, E. P. Busso and N. P. O'Dowd, Int. J. Plasticity, 17, 601 (2001). https://doi.org/10.1016/S0749-6419(00)00064-4
  30. A. Arsenlis, D. M. Parks, R. Becker and V. V. Bulatov, J. Mech. Phys. Solids, 52, 1213 (2004). https://doi.org/10.1016/j.jmps.2003.12.007
  31. U. Borg, Euro. J. Mech. A/Sol., 26, 313 (2006).
  32. C. J. Bayley, W. A. Brekelmans and M. G. D. Geers, Phil. Mag., 87, 1361 (2007). https://doi.org/10.1080/14786430600965107
  33. H. Wang, K. C. Hwang, Y. Huang, P. D. Wu, B. Liu, G. Ravichandran, C. -S. Han, H. Gao, Int. J. Plasticity, 23, 1540 (2007). https://doi.org/10.1016/j.ijplas.2007.01.004
  34. A. G. Evans and J. W. Hutchinson, Acta Mater., 57, 1675 (2007).
  35. J. M. Gerken and P. R. Dawson, J. Mech. Phys. Solids, 56, 1651 (2008). https://doi.org/10.1016/j.jmps.2007.07.012
  36. Y. Aoyagi and K. Shizawa, Int. J. Plasticity, 23, 1022 (2007). https://doi.org/10.1016/j.ijplas.2006.10.009
  37. K. S. Cheong, E. P. Busso and A. Arsenlis, Int. J. Plasticity, 21, 1797 (2005). https://doi.org/10.1016/j.ijplas.2004.11.001
  38. Y. Wang, J. W. Kysar, S. Vukelic and Y. L. Yao, J. Manuf. Sci. Eng., 131, 041014-1 (2009). https://doi.org/10.1115/1.3160370
  39. J. F. Nye, Acta Metall., 1, 153 (1953). https://doi.org/10.1016/0001-6160(53)90054-6
  40. U. F. Kocks, A. S. Argon and M. F. Ashby, Prog. Mater. Sci., 19, 1 (1975). https://doi.org/10.1016/0079-6425(75)90005-5
  41. P. Franciosi, M. Berveiller and A. Zaoui, Acta Metall., 28, 273 (1980). https://doi.org/10.1016/0001-6160(80)90162-5
  42. P. Franciosi and A. Zaoui, Acta Metall., 30, 2141 (1982). https://doi.org/10.1016/0001-6160(82)90135-3
  43. P. Franciosi and A. Zaoui, Acta Metall., 30, 1627 (1982). https://doi.org/10.1016/0001-6160(82)90184-5
  44. Y. Zhou, K. W. Neale and L. S. Toth, Int. J. Plasticity, 9, 961 (1993). https://doi.org/10.1016/0749-6419(93)90061-T
  45. D. Peirce, R. J. Asaro and A. Needleman, Acta Metall., 31, 1951 (1983). https://doi.org/10.1016/0001-6160(83)90014-7
  46. D. Peirce, C. F. Shih and A. Needleman, Computers Structures, 18, 875 (1984). https://doi.org/10.1016/0045-7949(84)90033-6
  47. P. M. Anderson and J. R. Rice, Acta Metall., 33, 409 (1985). https://doi.org/10.1016/0001-6160(85)90083-5
  48. Wigner, E., Seitz, F., 1933. On the constitution of metallic sodium. Physical Review 43, 804-810. https://doi.org/10.1103/PhysRev.43.804
  49. J. Harder, Int. J. Plasticity, 15, 605 (1999). https://doi.org/10.1016/S0749-6419(99)00002-9
  50. A. Arsenlis and D. M. Parks, Acta Mater., 47, 1597 (1999). https://doi.org/10.1016/S1359-6454(99)00020-8
  51. T. Hoc, C. Rey and M. L. Giorgi, J. Phys. IV France, 11, Pr5-243 (2001).
  52. L. Tabourot, M. Fivel and E. Rauch, Mater. Sci. Eng. A, 234-236, 639 (1997) https://doi.org/10.1016/S0921-5093(97)00353-5
  53. L. Tabourot, S. Dumoulin and P. Balland, J. Phys. IV France, 11, Pr5-111 (2001).
  54. R. Madec, B. Devincre, L. Kubin, T. Hoc and D. Rodney, Science, 301, 1879 (2003). https://doi.org/10.1126/science.1085477
  55. M. Fivel, L. Tabourot, E. Rauch and G. Canova, J. Phys. IV France, 8, Pr8-151 (1998).
  56. S. I. Rao, T. A. Parthasarathy, D. M. Dimiduk and P. M. Hazzledine, Phil. Mag., 84, 3195 (2004). https://doi.org/10.1080/14786430412331284432
  57. W. Mangen and E. Nembach, Acta Metall., 37, 1451 (1989). https://doi.org/10.1016/0001-6160(89)90177-6
  58. N. Hansen, Acta Metall., 25, 863 (1977). https://doi.org/10.1016/0001-6160(77)90171-7
  59. N. Hansen and B. Ralph, Acta Metall., 30, 411 (1982). https://doi.org/10.1016/0001-6160(82)90221-8
  60. Z. Jiang, J. Lian and B. Baudelet, Acta Metall. Mater., 43, 3349 (1995). https://doi.org/10.1016/0956-7151(95)00031-P
  61. X. Feaugas, Acta Mater., 47, 3617 (1999). https://doi.org/10.1016/S1359-6454(99)00222-0