DOI QR코드

DOI QR Code

Current Technology Trends Analysis on the Recovery of Rare Earth Elements from Fluorescent Substance in the Cold Cathode Fluorescent Lamps of Waste Flat Panel Displays

폐디스플레이 CCFL에 존재하는 형광체 내 희토류 원소 회수 기술 동향 분석

  • Kang, Leeseung (Advanced Materials & Processing Center, Institute for Advanced Engineering) ;
  • Shin, Dongyoon (Advanced Materials & Processing Center, Institute for Advanced Engineering) ;
  • Lee, Jieun (Advanced Materials & Processing Center, Institute for Advanced Engineering) ;
  • Ahn, Joong Woo (Department of Interdisciplinary ECO Science, Sungshin University) ;
  • Hong, Hyun-Seon (Advanced Materials & Processing Center, Institute for Advanced Engineering)
  • 강이승 (고등기술연구원 신소재공정센터) ;
  • 신동윤 (고등기술연구원 신소재공정센터) ;
  • 이지은 (고등기술연구원 신소재공정센터) ;
  • 안중우 (성신여자대학교 청정융합과학과) ;
  • 홍현선 (고등기술연구원 신소재공정센터)
  • Received : 2015.01.19
  • Accepted : 2015.02.04
  • Published : 2015.02.28

Abstract

Flat panel display devices are mainly used as information display devices in the 21st century. The worldwide waste flat panel displays are expected at 2-3 million units but most of them are land-filled for want of a proper recycling technology More specifically, rare earth metals of La and Eu are used as fluorescent materials of Cold Cathode Flourscent Lamp(CCFL)s in the waste flat panel displays and they are critically vulnerable and irreplaceable strategic mineral resources. At present, most of the waste CCFLs are disposed of by land-filling and incineration and proper recovery of 80-plus tons per annum of the rare earth fluorescent materials will significantly contribute to steady supply of them. A dearth of Korean domestic research results on recovery and recycling of rare earth elements in the CCFLs prompts to initiate this status report on overseas research trends and noteworthy research results in related fields.

Keywords

References

  1. H. S. Hong, M. S. Kong, S. K. Lee and H. Y. Kang: KIC News, 13 (2010) 10 (Korean).
  2. J. Li, S. Gao, H. Duan and L. Liu: Waste Manag., 29 (2009) 2033. https://doi.org/10.1016/j.wasman.2008.12.013
  3. J. Cryan, K. Freegard, L. Morrish and N. Myles: WRAP2010 (2010) 45.
  4. M. Buchert, A. Manhart, D. Bleher and D. Pingel: Oeko- Institute. V (2012).
  5. T. Hirajimaa, A. Bissomboloa, K. Sasakia, K. Nakayamab, H. Hiraic and M. Tsunekawad: Int. J. Miner. Process., 77 (2005) 187. https://doi.org/10.1016/j.minpro.2005.05.002
  6. T. Hirajimaa, K. Sasakia, A. Bissomboloa, H. Hiraib, M. Hamadac and M. Tsunekawad: Separ. Purif. Tech., 44 (2005) 197. https://doi.org/10.1016/j.seppur.2004.12.014
  7. K. Wada, F. Mishima, Y. Akiyama and S. Nishijima: Physica C, 494 (2013) 217. https://doi.org/10.1016/j.physc.2013.04.086
  8. K. Wada, F. Mishima, Y. Akiyama and S. Nishijima: Phys. Procedia., 58 (2014) 252. https://doi.org/10.1016/j.phpro.2014.09.068
  9. G. Mei and K Xie: 2nd International Conference on Bioinformatics and Biomedical Engineering (2008) 4674.
  10. A. Otsuki, G. Dodbiba, A. Shibayama, J. Sadaki, G. Mei and T. Fujita: Jpn. J. Appl. Phys., 47 (2008) 5093. https://doi.org/10.1143/JJAP.47.5093
  11. A. Otsuki, G. Mei, Y. Jiang, M. Matsuda, A. Shibayama, J. Sadaki and T. Fujita: Resour. Process., 53 (2006) 121. https://doi.org/10.4144/rpsj.53.121
  12. F Yang, F. Kubota, Y. Baba, N. Kamiya and M. Goto: J. Hazard. Mater., 254 (2013) 79.
  13. K. V. Gourishankar, A. M. Srivastava, P. K. Nammal War and S. K. Manepalli: United State, US 8,282,703 B2 (2012).