DOI QR코드

DOI QR Code

A Germanium Detector Structure PENEL OPE Characteristic Analysis by Computer Simulation

HPGe 검출기의 PENELOPE 전산모사에 의한 특성 분석

  • Jang, Eunsung (Pusan National University Nuclear Physics and Radiation Technology Research Center) ;
  • Jang, BoSeok (Department of Image Information Engineering, Pusan National University)
  • 장은성 (부산대학교 핵물리 및 방사선기술연구소) ;
  • 장보석 (부산대학교 공과대학 영상정보공학과)
  • Received : 2014.09.26
  • Accepted : 2015.02.25
  • Published : 2015.02.28

Abstract

In order to observe the detailed structure of the detector, it was CT scanned to reproduce the detailed structure of the crystal shapes and traverse layer using the Monte Carlo calculation applying the detector model. The uncertainty of measurement was lowered by adjusting the detector core by the edge effect at a higher energy (400 keV or higher) through the offset of peak efficiency of the gamma ray at low energy. It was confirmed that there was the appropriate matching with spatial dependency using the PENELOPE calculation. That was achieved by adjusting the parameters describing the crystal core and rounding of edge and crystal core.

검출기의 자세한 구조를 알고자 CT 스캐닝을 하였으며 크리스털 형상과 사층에 관한 세부적인 구조를 전산모사 계산법을 이용해 재현하였다. 낮은 에너지의 감마선에 대한 피크 효율이 거리가 작아질수록 감소, 보다 높은 에너지(400 keV) 아상에서의 전체 효율성은 검출기 코어를 조정함으로써 불확도를 줄일 수 있었다. PENELOPE 계산법을 이용해 얻은 공간적 의존성 사이에 적절한 일치점이 달성되었음을 확인 하였다. 이는 크리스털 코어, 모서리와 크리스털 코어의 라운딩을 설명해 주는 매개변수들을 조정함으로써 달성되었다.

Keywords

References

  1. F. Salvat, J. M. Fernandez-Varea, J. Sempau, PENELOPE, A code system for Monte Carlo simulation of electron and photon transport. in : Workshop Proceeding, Issy-les Moulineaux, France, 7-10 July 2003. OECD.
  2. M. Korun, R. Martincic, Nucl. Instr. and Meth. A 385 (1997) 511. https://doi.org/10.1016/S0168-9002(96)01165-5
  3. M. Korun, R. Martincic, Appl. Radiat. Isot. 43 (1992) 29. https://doi.org/10.1016/0883-2889(92)90074-O
  4. K. Debertin, R.G. Helmer, Gamma and X-ray Spectrometry with Semiconductor Detectors, North- Holland, Amsterdam, 1988.
  5. M. Geretschlager, Nucl. Instr. and Meth. B 28 (1987) 289. https://doi.org/10.1016/0168-583X(87)90120-0
  6. M. Decombaz, J.-J. Gostely, J-P. Laederman, Nucl. Instr. and Meth. A 312 (1992) 152. https://doi.org/10.1016/0168-9002(92)90146-U
  7. E.S. Jang Limits to measurement 134Cs in soil samples 2014.
  8. G. Haase, D. Tait, A. Wiechen, Nucl. Instr. and Meth. A 336 (1993) 206. https://doi.org/10.1016/0168-9002(93)91099-9
  9. C.S. Kim et al., Measurement of the HPGe Detector Efficiencies for ${\gamma}$-raya and a Comparison with Monte Carlo Calculations. Sae Mulli 37,(1997) 399.
  10. Korun, M., Martincic, R. Measurements of the total-to-peak ratio of a semiconductor gamma-ray. Nucl. Instr. Methods Phys. Res. A 385 (1996) 511.
  11. Mones, L., De Donder, J., Lin, X.-L., De Corte, F., De Wispelaere, A., Simonits, A., Hoste, J., Calculation of the absolute peak efficiency of gamma-ray detectors for different counting geometries. Nucl. Instr. Methods 187 (1981) 451. https://doi.org/10.1016/0029-554X(81)90374-8

Cited by

  1. 고순도 저마늄 감마선 검출기의 검출효율에 따른 유효입체각 검증에 관한 연구 vol.14, pp.4, 2015, https://doi.org/10.7742/jksr.2020.14.4.487
  2. 실린더 및 확장 소스 PENELOPE 시뮬레이션에 대한 동시합성보정 계수 유용성 평가 vol.15, pp.6, 2021, https://doi.org/10.7742/jksr.2021.15.6.821