DOI QR코드

DOI QR Code

Thermal Resolution Analysis of Lock-in Infrared Microscope

위상잠금 열영상 현미경의 온도분해능 분석

  • 김기석 (한국기초과학지원연구원 첨단장비개발사업단) ;
  • 이계승 (한국기초과학지원연구원 첨단장비개발사업단) ;
  • 김건희 (한국기초과학지원연구원 첨단장비개발사업단) ;
  • 허환 (한국기초과학지원연구원 첨단장비개발사업단) ;
  • 김동익 (한국과학기술원 스마트 IT 융합시스템연구단) ;
  • 장기수 (한국기초과학지원연구원 첨단장비개발사업단)
  • Received : 2014.09.23
  • Accepted : 2014.10.29
  • Published : 2015.02.28

Abstract

In this study, we analyzed and showed the enhanced thermal resolution of a lock-in infrared thermography system by employing a blackbody system and micro-register sample. The noise level or thermal resolution of an infrared camera system is usually expressed by a noise equivalent temperature difference (NETD), which is the mean square of the deviation of the different values measured for one pixel from its mean values obtained in successive measurements. However, for lock-in thermography, a more convenient quantity in the phase-independent temperature modulation amplitude can be acquired. On the basis of results, it was observed that the NETD or thermal resolution of the lock-in thermography system was significantly enhanced, which we consider to have been caused by the averaging and filtering effects of the lock-in technique.

본 연구에서는 기존의 열영상 측정 장치에 비해 위상잠금기법을 채용한 열영상 측정 장치의 온도분해능이 얼마나 향상될 수 있는지를 평가하기 위해 흑체시스템과 마이크로 레지스터 시편을 이용한 실험을 수행하여 개선된 온도분해능을 확인하였다. 일반적으로 적외선 열영상 측정 장치의 노이즈 수준 또는 온도분해능은 연속적으로 측정된 열영상의 픽셀별 온도의 평균과 각각의 측정값의 편차에 대한 제곱의 평균으로 정의되는 잡음등가온도차(noise equivalent temperature difference, NETD)라는 척도를 이용하여 평가되고 있다. 하지만 위상잠금 열영상 기법을 적용하면 더욱 편리한 방법을 이용할 수 있는데 이는 측정된 열영상 신호의 위상과는 무관한 온도의 진폭에 관한 정보를 이용하는 것이다. 연구결과를 통해 알 수 있듯이, 위상잠금 기법을 적용하게 되면 측정된 신호의 온도분해능 성능을 보여주는 잡음등가온도차가 크게 향상되었으며 이는 위상잠금기법이 내부적으로 수행하는 평균화 작업과 필터링 기능 때문인 것으로 판단되고 있다.

Keywords

References

  1. P. K. Kuo, T. Ahmed, H. Jin and R. L. Thomas, "Phase-locked image acquisition in thermography," Proc. SPIE, 1004, pp. 41-47 (1988)
  2. D. Wu and G. Busse, "Lock-in thermography for nondestructive evaluation of materials," Revue Generale de Thermique, Vol. 37, No. 8, pp. 693-703 (1998) https://doi.org/10.1016/S0035-3159(98)80047-0
  3. O. Breitenstein and M. Langenkamp, "Microscopic lock-in thermography investigation of leakage sites in integrated circuits," Rev. Sci. Instrum., Vol. 71, No. 11, pp. 4155-4160 (2000) https://doi.org/10.1063/1.1310345
  4. A. Orozco, J. Gaudestad, N. E. Gagliolo, C. Rowlett and E. Wong, "3D magnetic field imaging for non-destructive fault isolation," Conference Proceedings from the 39th International Symposium for Testing and Failure Analysis, November 3-7, San Jose, California, USA, pp. 189-193 (2013)
  5. F. Infante, P. Perdu and D. Lewis, "Magnetic microscopy for 3D devices: Defect localization with high resolution and long working distance on complex system in package," Microelectronics Reliability, Vol. 49, No. 9-11, pp. 1169-1174 (2009) https://doi.org/10.1016/j.microrel.2009.06.041
  6. C. Schmidt, F. Altmann and O. Breitenstein, "Application of lock-in thermography for failure analysis in integrated circuits using quantitative phase shift analysis," Materials Science and Engineering: B, Vol. 177, No. 15, pp. 1261-1267 (2012) https://doi.org/10.1016/j.mseb.2012.02.011
  7. S. Christian, A. Frank, S. Rudolf and D. Herve, "Non-destructive defect depth determination at fully packaged and stacked die devices using lock-in thermography," 17th IEEE International Symposium on Physical and Failure Analysis of Integrated Circuits (IPFA), July 5-9, Singapore, pp. 1-5 (2010)
  8. C. H. Oxley, R. H. Hopper and G. A. Evans, "Improved infrared(IR) microscope measurements for the micro-electronics industry," Electronics System-Integration Technology Conference, September 1-4, Greenwich, pp. 215-218 (2008)
  9. G. Busse, D. Wu and W. Karpen, "Thermal wave imaging with phase sensitive modulated thermography," J. Appl. Phys., Vol. 71, No. 8, pp. 3962-3965 (1992) https://doi.org/10.1063/1.351366
  10. O. Breitenstein and M. Langenkamp, "Lock-in contact thermography investigation of lateral electronic inhomogeneities in semiconductor devices," Sensors and Actuators A, Vol. 71, pp. 46-50 (1998) https://doi.org/10.1016/S0924-4247(98)00170-8
  11. D. Wu and G. Busse, "Lock-in thermography for nondestructive evaluation of materials," Revue Generale de Thermique, Vol. 37, No. 8, pp. 693-703 (1998) https://doi.org/10.1016/S0035-3159(98)80047-0
  12. D. Wu, A. Salerno, B. Schonbach, H. Hallin H and G. Busse, Phase-sensitive modulation thermography and its applications for NDE, An International Conference on Thermal Sensing and Imaging, April 21, Orlando, FL, USA, Vol. 3056, pp. 176-182 (1997)
  13. M. Y. Choi, K. S. Kang, J. H. Park, W. T. Kim and K. S. Kim, "Quantitative determination of a subsurface defect of reference specimen by lock-in infrared thermography," NDT&E International, Vol. 41, No. 2, pp. 119-241 (2008) https://doi.org/10.1016/j.ndteint.2007.08.006
  14. O. Breitenstein, J. P. Rakotoniaina and M. H. Al Rifai, "Quantitative evaluation of shunts in solar cells by lock-in thermography," Prog. Photovolt: Res. Appl., Vol. 11, No. 8, pp. 515-526 (2003) https://doi.org/10.1002/pip.520
  15. D. I. Kim, G. S. Kim, G. H. Kim and K. S. Chang, "Responsivity and noise evaluation of infrared thermal imaging camera," Journal of the Korean Society for Nondestructive Testing, Vol. 33, No. 4, pp. 342-348 (2013) https://doi.org/10.7779/JKSNT.2013.33.4.342
  16. G. S. Kim, G. H. Kim, J. M. Park, D. Y. Kim and B. K. Cho, "Application of infrared lock-in thermography for the quantitative evaluation of bruises on pears," Infrared Physics & Technology, Vol. 63, pp. 133-139 (2014) https://doi.org/10.1016/j.infrared.2013.12.015
  17. O. Breitenstein and M. Langenkamp, "Lock-in Thermgraphy - Basics and Use for Functional Diagnostics of Electronic Components," Springer, Heidelberg, (2003)

Cited by

  1. A Method to Simulate Frictional Heating at Defects in Ultrasonic Infrared Thermography vol.35, pp.6, 2015, https://doi.org/10.7779/JKSNT.2015.35.6.407
  2. 3D Defect Localization on Exothermic Faults within Multi-Layered Structures Using Lock-In Thermography: An Experimental and Numerical Approach vol.17, pp.10, 2017, https://doi.org/10.3390/s17102331