DOI QR코드

DOI QR Code

Optimization of the cryopreserved condition for utilization of GPCR frozen cells

GPCR 냉동보관 세포의 활용을 위한 냉동조건의 최적화 연구

  • Noh, Hyojin (Department of Biomedical Technology, Sangmyung University) ;
  • Lee, Sunghou (Department of Biomedical Technology, Sangmyung University)
  • 노효진 (상명대학교 의생명공학과) ;
  • 이승호 (상명대학교 의생명공학과)
  • Received : 2014.10.02
  • Accepted : 2015.02.12
  • Published : 2015.02.28

Abstract

The major target for drug discovery, G-protein coupled receptor (GPCR) is involved in many physiological activities and related to various diseases and disorders. Among experimental techniques relating to the GPCR drug discovery process, various cell-based screening methods are influenced by cell conditions used in the overall process. Recently, the utilization of frozen cells is suggested in terms of reducing data variation and cost-effectiveness. The aim of this study is to evaluate various conditions in cell freezing such as temperature conditions and storage terms. The stable cell lines for calcium sensing receptor and urotensin receptor were established followed by storing cultured cells at $-80^{\circ}C$ up to 4 weeks. To compare with cell stored at liquid nitrogen, agonist and antagonist responses were recorded based on the luminescence detection by the calcium induced photoprotein activation. Cell signals were reduced as the storage period was increased without the changes in $EC_{50}$ and $IC_{50}$ values $EC_{50}:3.46{\pm}1.36mM$, $IC_{50}:0.49{\pm}0.15{\mu}M$). In case of cells stored in liquid nitrogen, cell responses were decreased comparing to those in live cells, however changes by storage periods and significant variations of $EC_{50}/IC_{50}$ values were not detected. The decrease of cell signals in various frozen cells may be due to the increase of cell damages. From these results, the best way for a long-term cryopreservation is the use of liquid nitrogen condition, and for the purpose of short-term storage within a month, $-80^{\circ}C$ storage condition can be possible to adopt. As a conclusion, the active implementation of frozen cells may contribute to decrease variations of experimental data during the initial cell-based screening process.

신약 개발의 주요 표적이 되는 G-protein coupled receptor (GPCR)은 대부분의 생리적 활동에 관여하며 다양한 질병과 질환들에 관련되어 있다. GPCR을 타겟으로 하는 의약개발 연구에서 필수적인 실험방법으로 많이 활용되고 있는 세포기반 스크리닝 기술들은 사용되는 세포의 상태에 따라 데이터의 질이 좌우되는데 최근, 실험에 사용할 세포를 매번 배양하면서 소모되는 비용과 데이터의 변동을 줄이기 위해 냉동보관 세포를 적용하는 추세이다. 이에 본 연구에서는 단일 세포를 많은 양으로 배양하고 냉동 보관한 다음 사용되는 세포의 반응을 최적화하기 위하여 칼슘 검출을 위한 광 단백질이 포함된 세포주에 calcium sensing receptor와 urotensin II receptor가 안정적으로 발현되는 안정화 세포를 제작하고 $-80^{\circ}C$에서 보관한 다음 7 일 간격으로 실험했을 때 효능제와 길항제 반응을 비교하였다. 실험결과 보관기간이 증가함에 따라 세포 신호 값이 감소하였지만 $EC_{50}$$IC_{50}$ 값의 변화는 나타나지 않았다($EC_{50}:3.46{\pm}1.36mM$, $IC_{50}:0.49{\pm}0.15{\mu}M$). 그러나 액체질소에서 보관한 세포의 경우에서는 비냉동 세포와 비교하여 세포 신호 값이 감소했지만 보존기간에 따른 변화가 나타나지 않았으며 기간에 따른 $IC_{50}:0.49{\pm}0.15{\mu}M$$IC_{50}$의 변화도 없었다. 보관기간이 경과 될수록 세포의 신호 값이 감소하는 것은 세포 손상도 증가가 원인인 것으로 판단되며, 이러한 결과들로부터 장기간 냉동 보관을 위해서는 액체질소를 이용하는 것이 가장 효과적이고 한 달 이내 단기간 사용의 목적으로는 $-80^{\circ}C$ 보관조건도 가능할 것으로 판단된다. 이와 같이 냉동세포의 적극적인 활용을 통하여 초기 스크리닝 과정에서 나타나는 실험 유동성을 감소시킬 수 있을 것으로 예상된다.

Keywords

References

  1. Overington, J.P., Al-Lazikani, B., Hopkins, A.L. "How many drug targets are there?", Drug Discov. Today 5, 993-996, 2006.
  2. Bhaumik, S., Gambhir, S. S. "Optical imaging of Renilla luciferase reporter gene expression in living mice.", Proc Natl Acad Sci USA 99, 377-382, 2002. DOI: http://dx.doi.org/10.1073/pnas.012611099
  3. Lorenz, W, W., McCann, R, O., Longiaru, M., Cormier, M. J. "Isolation and expression of a cDNA encoding Renilla reniformis luciferase.", Proc Natl Acad Sci USA 88, 4438-4442, 1991. DOI: http://dx.doi.org/10.1073/pnas.88.10.4438
  4. Fox, S., Farr-Jones, S., Sopchak, L., Boggs, A., Comley, J. "High-throughput screening: Searching for higher productivity.", J Biomol Screen, 9(4):354-8, 2004. DOI: http://dx.doi.org/10.1177/1087057104265290
  5. Beske, O, E., Goldbard, S. "High-throughput cell analysis using multiplexed array technologies.", Drug Discov Today 7, S131-S135, 2002. DOI: http://dx.doi.org/10.1016/S1359-6446(02)02388-7
  6. Zhu, Z., Puglisi, J., Connors, D., Stewart, J., Herbst, J., Marino, A., Sinz, M., O'Connell, J., Banks, M., Dickinson, K., Cacace, A, B. " Use of cryopreserved transiently transfected cells in high-throughput pregnane X receptor transactivation assay.", J. Biomol. Screen, 11, 644-651, 2007.
  7. Lerner, M.R. "Tools for investigating functional interactions between ligands and G-protein-coupled receptors.", Trends Neurosci, 17:142-146, 1994. DOI: http://dx.doi.org/10.1016/0166-2236(94)90087-6
  8. Stadel, J.M., Wilson, S., Bergsma, D.J. "Orphan G protein-coupled receptors: a neglected opportunity for pioneer drug discovery.", Trends Pharmacol Sci 18:430-437, 1997. DOI: http://dx.doi.org/10.1016/S0165-6147(97)01117-6
  9. Milligan, G. "Strategies to identify ligands for orphan G-protein-coupled receptors.", Biochem Soc Trans 30:789-793, 2002. DOI: http://dx.doi.org/10.1042/BST0300789
  10. Zaman, G.J., de Roos, J.A., Biomenrohr, M., van Koppen, C.J., Oosterom, J. " Cryopreserved cells facillitate cell-based drug discovery.", Drug Discov Today, 12:521-6, 2007. DOI: http://dx.doi.org/10.1016/j.drudis.2007.05.008
  11. Dong, J.F., Detta, A., Hitchcock, E.R., "Susceptiblity of human foetal brain tissue to cool-and freeze-storage.", Brain Res, 621:242-248, 1993. DOI: http://dx.doi.org/10.1016/0006-8993(93)90112-Z
  12. Hall, C. V., Jacob, P, E., Ringold, G, M., Lee, F. "Expression and regulation of Escherichia coli lacZ gene fusions in mammalian cells.", J Mol Appl Genet. 2, 101-109, 1983.
  13. Kunapuli, P.. Zheng, W., Weber, M., Solly, K., Mull, R,, Platchek, M., Cong, M., Zhong, Z., Strulovici, B. "Application of division arrest technologyto cell-based HTS:Comparison with frozen cells and fresh cells.", Assay Drug Dev. Technol, 3, 17-26. 2005. DOI: http://dx.doi.org/10.1089/adt.2005.3.17
  14. Marinissen, M.L., and Gutkind, J.S. "G-protein-coupled receptors and signaling networks:emerging paradigms.", Trends Pharmacol Sci, 22:368-376, 2001. DOI: http://dx.doi.org/10.1016/S0165-6147(00)01678-3
  15. Button, D., Brownstein, M. "Aequorin-expressing mammalian cell line used to report $Ca^{2+}$ mobilization.", Cell Calcium, 14(9):663-71, 1993. DOI: http://dx.doi.org/10.1016/0143-4160(93)90091-J
  16. Kifor, O., MacLeod, R,J., Diaz, R., Bai, M., Yamaguchi, T., Yao, T., Kifor, I., Brown, E,M. "Regulation of MAP kinase by calcium-sensing receptor in bovine parathyroid and CaR-transfected HEK293 cells.", Am J Physiol Renal Physiol, 280(2):F291-302, 2001. https://doi.org/10.1152/ajprenal.2001.280.2.F291
  17. Zhiyun, Z., Ni, G., Ting, L., Dale E. M., Mingwei, W. "Quality control of cell-based high-throughput drug screening.", Acta Pharmaceutical Sinica B, 2(5):429-438, 2012. DOI: http://dx.doi.org/10.1016/j.apsb.2012.03.006
  18. Jones, B., Holskin, B., Meyer, S., Ung, T., Dupriez, V., Flores, SY., Burgeon, E., Ator, M., Duzic, E. "Aequorin functional assay for characterization of G-protein-coupled receptor: implementation cryopreserved transiently transfected cell.", Anal Biochem, 400(2):184-9, 2010. DOI: http://dx.doi.org/10.1016/j.ab.2010.01.028
  19. Liu, J., Chen, T., Norris, T., Knappenberger, K., Huston, J., Wood, M., Bostwick, R. "A high-throughput functional assay for characterization of gamma-aminobutyric acid(A) channels modulators using cryopreserved transiently transfected cells. Assay Drug Dev Technol, 6(6):781-6, 2008. DOI: http://dx.doi.org/10.1089/adt.2008.161