DOI QR코드

DOI QR Code

Silicon Carbide Deformable Mirror with 37 Actuators for Adaptive Optics

  • Ahn, Kyohoon (Science of Measurement, University of Science and Technology, Korea and Center for Space Optics, Korea Research Institute of Standards and Science) ;
  • Rhee, Hyug-Gyo (Science of Measurement, University of Science and Technology, Korea and Center for Space Optics, Korea Research Institute of Standards and Science) ;
  • Yang, Ho-Soon (Science of Measurement, University of Science and Technology, Korea and Center for Space Optics, Korea Research Institute of Standards and Science) ;
  • Kihm, Hagyong (Science of Measurement, University of Science and Technology, Korea and Center for Space Optics, Korea Research Institute of Standards and Science)
  • Received : 2015.10.06
  • Accepted : 2015.11.03
  • Published : 2015.11.30

Abstract

We present a prototype of a silicon carbide (SiC) deformable mirror (DM) for high power laser applications. The DM has a continuous SiC faceplate, the diameter and the thickness of which are 100 mm and 2 mm, respectively, and 37 stack-type piezoelectric actuators arranged in a rectangular grid. Compared with the glass faceplates used for conventional DMs, SiC has a high thermal diffusivity that effectively minimizes mirror distortions due to thermal gradients. The faceplate is thick enough for possible integration with monolithic cooling channels inside the faceplate. The faceplate without cooling channels presented in this paper has a high bending stiffness compared with glass DMs, but the proposed actuator configuration has flexure supports to reduce the shear stress at the adhesive while preserving optical performances. To examine the characteristics of the SiC DM, we simulated influence functions (IFs) by using a finite element analysis and then compared these results with the IF measured by using an optical interferometer. The optical performance of the DM was verified by generating Zernike polynomial modes based on the measured IF.

Keywords

Acknowledgement

Supported by : Korea Research Council of Science & Technology

References

  1. J. W. Hardy, Adaptive Optics for Astronomical Telescopes (Oxford University Press, New York, 1998).
  2. C. Nusser, I. Wehmann and E. Willenborg, Phys. Proc. 12A, 462 (2011).
  3. R. J. Beck, J. P. Parry, J. D. Shephard and D. P. Hand, Proc. SPIE 7913, 79130D (2011). https://doi.org/10.1117/12.875177
  4. L. Migliore, Proc. SPIE 6458, 64580W (2007). https://doi.org/10.1117/12.708642
  5. J. M. Bovatsek and R. S. Patel, Proc. SPIE 7585, 75850K (2010). https://doi.org/10.1117/12.845298
  6. N. J. Weston, D. P. Hand, S. Giet and M. Ardron, PCT patent application WO2012038707 (2012).
  7. K. E. Ougstun, J. Opt. Soc. Am. 72, 862 (1981).
  8. E. J. Szetela and A. I. Chalfant, Thermochimic. Acta 26, 191 (1978). https://doi.org/10.1016/0040-6031(78)80067-7
  9. M. A. Ealey and A. Wellman, Proc. SPIE 5193, 204 (2004). https://doi.org/10.1117/12.524908
  10. A. G. Safronov, Ph.D. thesis, General Physics Institute of Russian Academy of Sciences (1995).
  11. A. G. Safronov, B. S. Vinveitch and V. M. Zharikov, Proc. SPIE 3686, 16 (1999). https://doi.org/10.1117/12.335857
  12. G. Rabczuk and M. Sawczak, Opto-Electron. Rev. 14, 141 (2006).
  13. A. V. Kudryashov and V. V. Samarkin, Opt. Comm. Eng. 118, 317 (1995). https://doi.org/10.1016/0030-4018(95)00218-W
  14. B. S. Vinevich, L. N. Evdokimovich, S. N. Smirnov and A. G. Safronov, J. Opt. Technol. 71, 65 (2004). https://doi.org/10.1364/JOT.71.000065
  15. M. A. Ealey and J. A. Wellman, Proc. SPIE 1739, 374 (1992).
  16. S.-K. Park, S.-H. Baik, B.-H. Cha, D.-H. Oh, S.-S. Lee, J.-H. Lee and E.-C. Kang, J. Korean Phys. Soc. 59, 3256 (2011). https://doi.org/10.3938/jkps.59.3256
  17. L. Zhu, P. C. Sun, D. U. Bartsch, W. R. Freeman and Y. Fainman, Appl. Opt. 38, 168 (1999). https://doi.org/10.1364/AO.38.000168
  18. R. R. Shannon and J. C. Wyant, Applied Optics and Optical Engineering, Vol. 11 (Academic Press, New York, 1992).
  19. R. H. Freeman and H. R. Garcia, Appl. Opt. 21, 589 (1982). https://doi.org/10.1364/AO.21.000589
  20. J. C. Dainty, A. V. Koryabin and A. V. Kudryashov, Appl. Opt. 37, 4663 (1998). https://doi.org/10.1364/AO.37.004663
  21. H. Kihm, H.-S. Yang and Y.-W. Lee, J. Korean. Phys. Soc. 62, 1239 (2013). https://doi.org/10.3938/jkps.62.1239
  22. E. Dalimier and C. Dainty, Opt. Express 13, 4275 (2005). https://doi.org/10.1364/OPEX.13.004275

Cited by

  1. Modeling and experiment of surface error for large-aperture aspheric SiC mirror based on residual height and wheel wear vol.91, pp.1, 2015, https://doi.org/10.1007/s00170-016-9753-3
  2. Thermal control analysis of a primary mirror for large-aperture telescope vol.71, pp.1, 2017, https://doi.org/10.3938/jkps.71.28
  3. CVD SiC deformable mirror with monolithic cooling channels vol.26, pp.8, 2018, https://doi.org/10.1364/oe.26.009724
  4. 3D profiling of rough silicon carbide surfaces by coherence scanning interferometry using a femtosecond laser vol.57, pp.10, 2018, https://doi.org/10.1364/ao.57.002584
  5. Design of a discrete flexure for a SiC deformable mirror with PMN stacked-actuators vol.29, pp.20, 2015, https://doi.org/10.1364/oe.436362
  6. Analysis on ground surface in ultrasonic face grinding of silicon carbide (SiC) ceramic with minor vibration amplitude vol.47, pp.15, 2021, https://doi.org/10.1016/j.ceramint.2021.04.214