DOI QR코드

DOI QR Code

Study on Deformation of Miniature Metal Bellows in Cryocooler Following Temperature Change of Internal Gas

내부 기체의 온도 변화에 따른 극저온 냉각기용 소형 금속 벨로우즈의 변형에 관한 연구

  • Lee, Seung Ha (EO/IR R&D Lab., LIGNex1 Co., Ltd.) ;
  • Lee, Tae Won (Dept. of Mechanical Design Engineering, Kumoh Nat'l Inst. of Technology)
  • 이승하 (LIG 넥스원 탐색기/광학연구센터) ;
  • 이태원 (금오공과대학교 기계설계공학과)
  • Received : 2014.10.23
  • Accepted : 2015.01.04
  • Published : 2015.04.01

Abstract

A bellows is an important temperature control component in a Joule-Thomson micro-cryocooler. It is designed using a very thin shell, and the inside of the bellows is filled with nitrogen gas. The bellows is made of a nickel-cobalt alloy that maintains its strength and elastic properties in a wide range of temperatures from cryogenic to $300^{\circ}C$. The pressure of the gas and the volume within the bellows vary according to the temperature of the gas. As a result, the bellows contracts or expands in the axial direction like a spring. To explore this phenomenon, the deformation of the bellows and its internal volume must be calculated iteratively under a modified pressure until the state equation of the gas is satisfied at a given temperature. In this paper, the modified Benedict-Webb-Rubin state equation is adopted to describe the temperature-volume-pressure relations of the gas. Experiments were performed to validate the proposed method. The results of a numerical analysis and the experiments showed good agreement.

벨로우즈는 줄-톰슨 소형 극저온 냉각기에서 온도조절장치로 사용하는 중요한 부품이다. 벨로우즈는 매우 얇은 쉘로 제작되었으며 내부는 질소기체로 충전되어 있다. 또한 재료는 니켈-코발트 합금이며 이 재질은 $300^{\circ}C$에서 극저온까지 탄성계수와 강도가 변하지 않는 금속이다. 벨로우즈 내부의 기체는 온도가 바뀌면 기체의 압력과 부피가 변하고 결과적으로 벨로우즈가 길이 방향으로 수축 또는 팽창한다. 이 현상을 해석하기 위하여 주어진 온도에서 기체의 상태방정식이 만족될 때까지 수정된 압력하에서 벨로우즈의 변형과 변형된 내부 체적을 반복적으로 계산하였다. 현 연구에서 기체의 온도-부피-압력 상태를 정의하는 식으로 MBWR 상태 방정식이 채택되었다. 제안한 해석 방법론의 타당성을 증명하기 위하여 실험을 수행하였고 비교결과 수치 해는 실험값과 잘 일치하였다.

Keywords

References

  1. Koh, B. K., Park, G. J. and L, W. I., 1995, "Development of a Bellows Finite Element for the Analysis of Piping System," Trans. Korean Soc. Mech. Eng. A, Vol. 19, No. 6, pp. 1439-1450. https://doi.org/10.22634/KSME.1995.19.6.1439
  2. Koh, B. K and Park, G. J., 1997, "Development of Bellows Finite Element Analysis Program and Simplified Formulas of Bellows and Shape Optimization," Trans. Korean Soc. Mech. Eng. A, Vol. 21, No. 8, pp. 1195-1208. https://doi.org/10.22634/KSME-A.1997.21.8.1195
  3. Kim, D. H. and Choi, M. J., 2001, "Vibration Analysis Model for Bellows Using Reduced Degree of Freedom in the Vehicle Exhaust System," KSPE Autumn Conference, pp. 659-663.
  4. Lee, S. H and Lee, T. W., 2008, "A Study on the Structural Characteristic of Miniature Metal Bellows in Joule-Thomson Micro-Cryocooler," Journal of the KSPE, Vol. 25, No. 5, pp. 95-102.
  5. Chien, S. B., Chen, L. T. and Chou, F. C., 1996, "A Study on the Transient Characteristics of a Self-Regulating Joule-Thomson Cryocooler," Cryogenics, Vol. 36, No. 12, pp. 979-984. https://doi.org/10.1016/S0011-2275(96)00085-9
  6. Lee, S. E and Lee, T. W., 2008, "Deformation Analysis of Self-Regulating Bellows in Joule-Thomson Cryocooler," Journal of the KSPE, Vol. 25, No. 4, pp. 100-107.
  7. Lee, S. H. and Lee, T. W., 2009, "Deformation Analysis of Miniature Metal Bellows Charged Nitrogen for Temperature Change to Cryogenic Condition," Journal of the KSPE, Vol. 26, No. 10, pp. 81-88.
  8. Younglove, B. A., 1982, "Thermophysical Properties of Fluids. I. Argon, Ethylene, Parahydrogen, Nitrogen, Nitrogen Trifluoride, and Oxygen," Journal of Physical and Chemical Reference Data., Vol. 11, No. 1, pp. 1-9. https://doi.org/10.1063/1.555661
  9. Jacobsen, R. T., Stewart, R. B., 1973, "Thermodynamic Properties of Nitrogen Including Liquid and Vapor Phases from 63K to 2000K with Pressures to 10,000 Bar," Journal of Physical and Chemical Reference Data., Vol. 2, No. 4, pp. 757-922. https://doi.org/10.1063/1.3253132
  10. Lemmon, E. W., Huber, M. L. and McLinden, M. O., 2007, NIST Reference Fluid Thermodynamic and Transport Properties REFPROP Version 8.0, NIST
  11. Ahmad, S., Irons, B. M. and Zienkiewicz, O. C., 1970, "Analysis of Thick and Thin Shell Structures by Curved Element," Int. J. Numer. Methods Eng., Vol. 2, No. 2, pp. 419-451. https://doi.org/10.1002/nme.1620020310
  12. Zienkiewicz, O. C., Taylor, R. L. and Too, J. M., 1971, "Reduced Integration Techniques in General Analysis of Plates and Shells," Int. J. Numer. Methods Eng., Vol. 3, No. 2, pp. 275-290. https://doi.org/10.1002/nme.1620030211
  13. Hughes, T. J. R., Cohen, M. and Haron, M., 1978, "Reduced and Selective Integration Techniques in the Finite Element Analysis of Plates," Nuclear Eng. Design., Vol. 46, No. 1, pp. 203-222. https://doi.org/10.1016/0029-5493(78)90184-X
  14. Stolarski, H. and Belytschko, T., 1982, "Membrane Locking and Reduced Integration for Curved Elements," J. Apple. Mech., Vol. 49, No. 1, pp. 172-176. https://doi.org/10.1115/1.3161961
  15. Stolarski, H. and Belytschko, T., 1983, "Shear and Membrane Locking in the Curved C0 Elements," Comp. Method in Appl. Mech. and Eng., Vol. 41, No. 3, pp. 279-296. https://doi.org/10.1016/0045-7825(83)90010-5
  16. ANSYS, 2007, Online Documentation for ANSYS V11.0, ANSYS Inc.

Cited by

  1. Prediction of Dynamics of Bellows in Exhaust System of Vehicle Using Equivalent Beam Modeling vol.39, pp.11, 2015, https://doi.org/10.3795/KSME-A.2015.39.11.1105