DOI QR코드

DOI QR Code

Dam Effects on Spatial Extension of Flood Discharge Data and Flood Reduction Scale II

홍수 유출자료의 공간확장과 홍수저감효과에 대한 댐 영향 분석 II

  • Jung, Yong (Civil and Environmental Engineering, Wonkwang University) ;
  • Kim, Nam Won (Hydrology Research Div., Korea Institute of Construction Technology) ;
  • Lee, Jeong Eun (Hydrology Research Div., Korea Institute of Construction Technology)
  • 정용 (원광대학교 토목환경공학과) ;
  • 김남원 (한국건설기술연구원 수자원연구실) ;
  • 이정은 (한국건설기술연구원 수자원연구실)
  • Received : 2014.12.04
  • Accepted : 2015.02.13
  • Published : 2015.03.31

Abstract

This is a continuous study on the dam effects for the spatial extension of flood data. In this study, flood reduction rates of dams and their influences on downstream using the spatially extended flood data were implemented. Nam-Han River was selected for measuring the impacts of ChoongJu and HoangSung dams. In the evaluations of flood reduction rate at dams, the larger flood events have the lower flood reduction rates for both dams. At the YeoJoo water level station, the analyses of the relations between flood reduction rates and the sizes of watersheds dams located were performed. the sizes of watersheds having a functional dam have highly influenced on the reduction rates of flood. The average of flood reduction rates was smaller than the area rate. For instances, area rates of HoangSung (0.02) and ChoongJu dams (0.6) are larger than the average flood reduction rates for HoangSung (0.01) and ChoongJu dams (0.51), respectively. However, the water level station follows the dam flood reduction characteristics of dams themselves. The spatial effects of dam flood reductions are analyzed based on the three water level stations (GangChun, YeoJoo, YangPyung). The distance of flood reduction rates lower than 0.1 as average flood reduction rate was the area 7 times of watershed having a dam with 0.02 as a minimum reduction rate.

본 연구는 홍수 유출자료의 공간확장에 대한 중간 시설물 (e.g. 댐)의 영향 연구의 연장으로, 공간확장된 시간당 홍수 유출자료를 활용해 댐의 홍수조절 특성과 댐의 홍수저감률 변화를 공간적으로 분석하였다. 이를 위해 횡성댐과 충주댐의 직접적인 영향을 받는 남한강 본류를 연구중심지역으로 선정하였다. 댐의 홍수저감률에 대한 댐 자체 분석에 의하면 홍수사상 크기가 커질수록 댐의 홍수저감률이 작아지는 것을 횡성댐과 충주댐 모두 보였다. 두 댐의 영향을 받는 여주 수위관측소에서 유역면적의 비와 홍수저감률과의 관계는 댐이 포함하는 유역이 커질수록 홍수저감률이 커지는 특성이 있으며 선정된 수위관측소에서의 평균 홍수저감률은 유역면적비에 비해 작게 나타났다. 일예로, 첨두홍수량(peak discharge)을 기준으로, 횡성댐과 충주댐의 유역면적비가 0.02와 0.6인데 평균 홍수저감률이 0.01와 0.51로 나타났다. 댐에서 떨어진 거리의 수위관측소에서도 홍수의 크기에 따른 홍수저감률은 댐 자체의 홍수저감 특성과 동일하게 작용하였다. 댐의 홍수저감률에 대한 공간적 영향범위를 세 곳의 수위관측소(강천, 여주, 양평)를 기준으로 분석하였다. 이 과정을 통해 댐을 포함하는 유역면적의 7배에 해당하는 유역면적에서는 홍수저감률이 약 0.1이하로 떨어졌고, 최저 0.02까지 떨어지는 것을 관찰할 수 있었다.

Keywords

References

  1. Choo, T.H., and Chae, S.K. (2012). "Influence analysis for natural river bed with dam construction." J. of Korean Wetlands Society, Vol. 14, No. 4, pp. 715-723. (In Korean)
  2. Fitzhugh, T.W., and Vogel, R.M. (2010). "The impact of dams on flood flows in the United States." River Res. Applic. DOI: 10.1002/rra.1417
  3. Graf, W.L. (2006). "Downstream hydrologic and geomorphic effects of large dams on American rivers." Geomorphology, Vol. 79, pp 336-360. https://doi.org/10.1016/j.geomorph.2006.06.022
  4. Gross, E.J., and Moglen, G.E. (2007). " Estimating the hydrological influence of Maryland State Dams using GIS and the HEC-1 Model." J. of Hydrologic Engineering, Vol. 12, No. 6, pp. 690-693. https://doi.org/10.1061/(ASCE)1084-0699(2007)12:6(690)
  5. Kim, N.W., Jung, Y., and Lee, J.E. (2013). "Spatial extension of runoff data in the applications of a lumped concept model." J. of Korea Water Reso. Asso. Vol. 46, pp. 923-934.
  6. Kim, N.W., Jung, Y., and Lee, J.E. (2014). "Simulation conditions based characteristics of spatial flood data extension." J. of Korea Water Reso. Asso. Vol. 47, No. 6, pp. 501-511. https://doi.org/10.3741/JKWRA.2014.47.6.501
  7. Kim, N.W., Jung, Y., and Lee, J.E. (2015). "Dam effects on spatial extension of flood event data and flood reduction scale I." J. of Korea Water Reso. Asso. In Review.
  8. Magilligan, F.J., Nislow, K.H., Graber, B.E. (2003). "A scale-independent assessment of discharge reduction and riparian disconnectivity following flow regulation by dams." Geology, Vol. 31, pp. 569-572. https://doi.org/10.1130/0091-7613(2003)031<0569:SAODRA>2.0.CO;2
  9. Magilligan, F.J., and Nislow, K.H. (2005). "Changes in hydrologic regime by dams." Geomorphology, Vol. 71, pp. 61-78. https://doi.org/10.1016/j.geomorph.2004.08.017
  10. Park, B.J., Sung, Y.D., and Jung, K.S. (2005). "An Evaluation of fish habitat conditions due to the construction of Youngchun dam in the Gumho river." J. of Korea Water Reso. Asso. Vol. 38, No. 9, pp. 771-778. https://doi.org/10.3741/JKWRA.2005.38.9.771
  11. Park, H.-C., Lee, J.-H., and Lee, G.-G. (2014). "Effects of water level change on wetland vegetation in the area of riparian forest for dam construction periodfocused on the Hantan River dam." J. of Forest Science, Vol. 30, No. 1, pp. 76-84.
  12. Poff, N.L., Bledsoe, B.P., and Cuhaciyan, C.O. (2006). "Hydrologic variation with land use across the contiguous United States: geomorphic and ecological consequences for stream ecosystems." Geomorphology, Vol. 79, pp. 264-285. https://doi.org/10.1016/j.geomorph.2006.06.032
  13. Romano, S.P., Baer, S.G., Zaczek, J.J., and Williard, K.W.J. (2009). "Site modelling methods for detecting hydrologic alteration of flood frequency and flood duration in the floodplain below the Carlyle dam, Lower Kaskaskia river, Illinois, USA." River Research and Applications, Vol. 25, pp. 975-984. https://doi.org/10.1002/rra.1195
  14. Shim, J.H., Kim, J.T., Cho, W., and Kim, J.Y. (2004). "Multipurpose dam operation models for flood control using Fuzzy Control techniqure (III)-Multi resevoir opreation methods." J. of Korean Society of Hazard Mitigation, Vol. 4, No. 3, pp. 61-72. (In Korean)

Cited by

  1. Inference of natural flood frequency for the region affected by dams in Nam Han River vol.49, pp.7, 2016, https://doi.org/10.3741/JKWRA.2016.49.7.599
  2. Quantifying differences between reservoir inflows and dam site floods using frequency and risk analysis methods 2017, https://doi.org/10.1007/s00477-017-1401-4