DOI QR코드

DOI QR Code

Optical Measurement of Magnetic Anisotropy Field in Nanostructured ferromagnetic Thin Films

  • Whang, Hyun-Seok (Department of Physics and Institute of Applied Physics, Seoul National University) ;
  • Yun, Sang-Jun (Department of Physics and Institute of Applied Physics, Seoul National University) ;
  • Moon, Joon (Department of Physics and Institute of Applied Physics, Seoul National University) ;
  • Choe, Sug-Bong (Department of Physics and Institute of Applied Physics, Seoul National University)
  • Received : 2015.01.15
  • Accepted : 2015.02.11
  • Published : 2015.03.31

Abstract

The magnetic anisotropy field plays an important role in spin-orbit-torque-induced magnetization dynamics with electric current injection. Here, we propose a magnetometric technique to measure the magnetic anisotropy field in nanostructured ferromagnetic thin films. This technique utilizes a magneto-optical Kerr effect microscope equipped with two-axis electromagnets. By measuring the out-of-plane hysteresis loops and then analyzing their saturated magnetization with respect to the in-plane magnetic field, the magnetic anisotropy field is uniquely quantified within the context of the Stoner-Wohlfarth theory. The present technique can be applied to small nanostructures, enabling in-situ determination of the magnetic anisotropy field of nanodevices.

Keywords

References

  1. S. S. P. Parkin, M. Hayashi, and L. Thomas, Science 320, 190 (2008). https://doi.org/10.1126/science.1145799
  2. Ioan Mihai Miron, Kevin Garello, Gilles Gaudin, Pierre-Jean Zermatten, Marius V. Costache, Stephane Auffret, Sebastien Bandiera, Bernard Rodmacq, Alain Schuhl, and Pietro Gambardella, Nature 476, 189 (2011). https://doi.org/10.1038/nature10309
  3. Kevin Garello, Ioan Mihai Miron, Can Onur Avci, Frank Freimuth, Yuriy Mokrousov, Stefan Blugel, Stephane Auffret, Olivier Boulle, Gilles Gaudin, and Pietro Gambardella, Nat. Nanotech. 8, 587 (2013). https://doi.org/10.1038/nnano.2013.145
  4. A. V. Khvalkovskiy, V. Cros, D. Apalkov, V. Nikitin, M. Krounbi, K. A. Zvezdin, A. Anane, J. Grollier, and A. Fert, Phys. Rev. B 87, 020402 (2013).
  5. P. Gambardella and I. M. Miron, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369, 3175 (2011). https://doi.org/10.1098/rsta.2010.0336
  6. Ioan Mihai Miron, Gilles Gaudin, Stephane Auffret, Bernard Rodmacq, Alain Schuhl, Stefania Pizzini, Jan Vogel, and Pietro Gambardella, Nat. Mater. 9, 230 (2010).
  7. W. H. Meiklejohn and C. P. Bean, Phys. Rev. Lett. 102, 1413 (1956).
  8. Kyoung-Woong Moon, Jae-Chul Lee, Sug-Bong Choe, and Kyung-Ho Shin, Rev. Sci. Instrum. 80, 113904 (2009). https://doi.org/10.1063/1.3262635
  9. Kab-Jin Kim, Jae-Chul Lee, Sung-Min Ahn, Kang-Soo Lee, Chang-Won Lee, Young Jin Cho, Sunae Seo, Kyung-Ho Shin, Sug-Bong Choe & Hyun-Woo Lee, Nature 458, 740 (2009). https://doi.org/10.1038/nature07874
  10. D. A. Allwood, G. Xiong, C. C. Faulkner, D. Atkinson, D. Petit, R. P. Cowburn, J. Phys. D: Appl. Phys. 36, 2175 (2003). https://doi.org/10.1088/0022-3727/36/18/001
  11. C. Tannous and J. Gieraltowski, Eur. J. Phys. 29, 475 (2008). https://doi.org/10.1088/0143-0807/29/3/008
  12. D. Jiles, Introduction to Magnetism and Magnetic Materials, Chapman & Hall, London (1998) pp. 370-375.
  13. Uwe Bauer, Lide Yao, Aik Jun Tan, Parnika Agrawal, Satoru Emori, Harry L. Tuller, Sebastiaan van Dijken, and Geoffrey S. D. Beach, Nat. Mater, Published Online (2014).

Cited by

  1. Magnetism and Magnetocrystalline Anisotropy of Ni/Fe(001) Surface: A First Principles Study vol.25, pp.4, 2015, https://doi.org/10.4283/JKMS.2015.25.4.101