DOI QR코드

DOI QR Code

A phytogeographical study of Sasa borealis populations based on AFLP analysis

AFLP 마커를 이용한 조릿대 개체군의 식물지리학적 연구

  • Kim, Il Ryong (Ecological Conservation Research Department, National Institute of Ecology) ;
  • Yu, Dasom (Department of Biological Sciences, Ajou University) ;
  • Choi, Hong-Keun (Department of Biological Sciences, Ajou University)
  • 김일룡 (국립생태원 생태보전연구본부) ;
  • 유다솜 (아주대학교 생명과학과) ;
  • 최홍근 (아주대학교 생명과학과)
  • Received : 2014.11.11
  • Accepted : 2015.02.13
  • Published : 2015.03.31

Abstract

Sasa borealis (Hack.) Makino & Shibata is widely distributed in South Korea. With amplified fragment length polymorphism (AFLP) markers, we analyzed the genetic diversity of S. borealis to predict and measure the phytogeographical factors of these populations. Relatively high levels of genetic diversity (PPL = 37.2%, h = 0.143, I = 0.205) and genetic differentiation ($G_{ST}$ = 0.324, ${\theta}^B$ = 0.395) were confirmed in populations of S. borealis. Moreover, an analysis of molecular variance (AMOVA) showed that the rate of differentiation among the populations was 47.7%. The results showed that genetic diversity is inversely proportional to the latitude of the S. borealis populations, indicating that the distribution of S. borealis may have extended from lower to higher latitudes. This method of investigating the correlation between genetic diversity and latitude presents critical information for estimating changes in distributions and plant conservation due to climate change.

본 연구는 전국에 분포하는 조릿대[Sasa borealis (Hack.) Makino & Shibata]의 12 개체군을 대상으로 유전다양성을 분석하고, 이러한 분석 결과를 식물지리학적인 해석을 통하여 기후변화와 같은 변화 요인을 객관적으로 측정하고 예측할 수 있는 방법을 제시하기 위해 수행되었다. AFLP (amplified fragment length polymorphism) 분석을 통한 유전다양성 조사 결과, 조릿대 개체군의 유전다양성(PPL = 37.2%, h = 0.143, I = 0.205)과 유전적 분화도($G_{ST}$= 0.324, ${\theta}^B$=0.395)는 비교적 높은 수준으로 나타났다. AMOVA (Analysis of molecular variance) 분석 결과에서도 전체 유전적 변이 중 47.7%가 개체군 간 변이에 의한 것으로 나타났다. 그리고 조릿대 개체군들의 유전다양성은 위도가 높아짐 따라 감소하는 것이 확인 되었으며, 이는 남방계 식물인 조릿대의 분포가 낮은 위도에서 높은 위도로 전파된 과정과 일치하는 것으로 해석할 수 있다. 따라서 식물 개체군의 AFLP 분석 결과를 위도 변화와 비교 분석함으로써 기후변화에 따른 분포 변화의 정도를 파악하고 주요 식물의 보전 전략을 세우는 데 필요한 정보를 제공할 수 있다.

Keywords

References

  1. Chen, D. H. and P. C. Ronald. 1999. A rapid DNA minipreparation method suitable for AFLP and other PCR applications. Plant Molecular Biology Reporter 17: 53-57. https://doi.org/10.1023/A:1007585532036
  2. Clayton, W. D. and S. A. Renvoize. 1986. Genera graminum: grasses of the World. Royal Botanic Gardens, Kew, Paris.
  3. Doyle, J. J. and J. L. Doyle. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19: 11-15.
  4. Excoffier, L. and H. E. Lischer. 2010. Arlequin suite ver. 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10: 564-567. https://doi.org/10.1111/j.1755-0998.2010.02847.x
  5. Excoffier, L., P. E. Smouse and J. M. Quattro. 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131: 479-491.
  6. Falahati-Anbaran, M., A. A. Habashi, M. Esfahany, S. A. Mohammad and B. Ghareyazie. 2007. Population genetic structure based on SSR markers in alfalfa (Medicago sativa L.) from various regions contiguous to the centers of origin of the species. Indian Academy of Science 86: 59-63.
  7. Fischer, A. G. 1960. Latitudinal variations in organic diversity. Society for the Study of Evolution 14: 64-81.
  8. Hamrick, J. l., M. J. W. Godt and S. L. Sherman-Broyles. 1992. Factors influencing levels of genetic diversity in woody plant species. Forestry Sciences 42: 95-124. https://doi.org/10.1007/978-94-011-2815-5_7
  9. Holsinger, K. E. and P. O. Lewis. 2005. A package for analysis of population genetic data, ver. 1.0.4, Department of ecology and evolutionary biology, University of Connecticut, Storrs, CT
  10. Hsiao, J. Y. and S. M. Lee. 1999. Genetic diversity and microgeographic differentiation of Yushan cane (Yushania niitakayamensis; Poaceae) in Taiwan. Molecular Ecology 8: 263-270. https://doi.org/10.1046/j.1365-294X.1999.00563.x
  11. Jung. J., S. K. Singh, H. C. Pande, G. K. Srivastava, H. -K. Choi. 2014. Genetic diversity and population structure of Indian Isoetes dixitei Shende based on amplified fragment length polymorphisms and intron sequences of LEAFY. Aquatic Botany 113: 1-7. https://doi.org/10.1016/j.aquabot.2013.10.009
  12. Keiper, F. J. and R. McConchie. 2000. An analysis of genetic variation in natural populations of Sticherus flabellatus [R. Br. (St John)] using amplified fragment length polymorphism (AFLP) markers. Molecular Ecology 9: 571-581. https://doi.org/10.1046/j.1365-294x.2000.00901.x
  13. Kim, C., H. R. Na and H. -K. Choi. 2008. Conservation genetics of endangered Brasenia schreberi based on RAPD and AFLP markers. Journal of Plant Biology 51: 260-268. https://doi.org/10.1007/BF03036125
  14. Kim, C., H. Kim and H. -K. Choi. 2011. Assessment of the minimum population size for ex situ conservation of genetic diversity in Aster altaicus var. uchiyamae populations inferred from AFLP markers. Korean Journal of Environment and Ecology 25: 470-478. (In Korean)
  15. Kim, C., H. R. Na, J. Jung, H. Kim, J. O. Hyun, H. Shin and H. -K. Choi. 2012 Determination of the minimum population size for ex situ conservation of water-shield (Brasenia schreberi J.F. Gmelin) inferred from AFLP analysis. Journal of Ecology and Environment 35: 1-6. https://doi.org/10.5141/JEFB.2012.001
  16. Kong, W. S. 1985. A Phytogeographical Study on the Distribution of Bamboos in the Korean Peninsula. Journal of Ecology and Environment 8: 89-98. (In Korean)
  17. Kong, W. S. 2001. Spatio-Temporal Distributional Changes of Bamboo. Journal of Korean Geographical Society. 36: 444-457. (In Korean)
  18. Lee, T. B. 2003. Colored Flora of Korea. Vol. III. Hyangmunsa, Seoul. (In Korean)
  19. Lee, W. T. and Y. J. Yim. 1978. A study on Distribution of Vascular Plant in Korea. Journal of Plant Biology. 8: 1-33.
  20. Lee, Y. N. 2006. New Flora of Korea. Kyohaksa, Seoul. (In Korean)
  21. Loveless, M. D. and J. L. Hamrick. 1984. Ecological determinants of genetic structure in plant populations. Annual Review of Ecology and Systematics 15: 65-95. https://doi.org/10.1146/annurev.es.15.110184.000433
  22. Mantel, N. 1967. The detection of disease clustering and a generalized regression approach. Cancer Research 27: 209-220.
  23. Martin, P. R. and J. K. McKay. 2004. Latitudinal variation in genetic divergence of populations and the potential for future speciation. Evolution 58: 938-945. https://doi.org/10.1111/j.0014-3820.2004.tb00428.x
  24. Miller, M. P. 1997. Tools for Population Genetics Analysis (TFPGA). A Windows program for the analysis of allozyme and molecular population genetic data, ver. 1.3. Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ.
  25. Moran, G. F., J. C. Bell and J. W. Turnbull. 1989. A Cline in Genetic Diversity in River She-Oak Casuarina cunninghamiana. Australian Journal of Botany 37: 169-180. https://doi.org/10.1071/BT9890169
  26. Nakai, T. 1952. A Synoptical Sketch of Korean Flora. Bulletin of the National Science Museum, Tokyo. P. 143.
  27. Nakajima, M., N. Kanda and Y. Fujio. 1991. Fluctuation of gene frequency in sub-populations originated from one guppy population. Bulletin on the Japanese Society for the Science of Fish 57: 2223-2227. https://doi.org/10.2331/suisan.57.2223
  28. Nei, M. 1973. Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences of the United States of America 70: 3321-3323. https://doi.org/10.1073/pnas.70.12.3321
  29. Nei, M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583-590.
  30. Schrey A. W., M. Grispo, M. Awad, M. B. Cook, E. D. Mccoy, H. R. Mushinsky, T. Albayrak, S. Bensch, T. Burke, L. K. Butler, R. Dor, H. B. Fokidis, H. Jensen, T. Imboma, M. M. Kessler-Rois, A. Marzal, I. R. K. Stewart, H. Westerdahl, D. F. Westneat, P. Zehtindjiev and L. B. Martin. 2011. Broad-scale latitudinal patterns of genetic diversity among native European and introduced house sparrow (Passer domesticus) populations. Molecular Ecology 20: 1133-1143. https://doi.org/10.1111/j.1365-294X.2011.05001.x
  31. Suyama, Y., K. Obayashi and I. Hayashi. 2000. Clonal structure in a dwarf bamboo (Sasa senanensis) population inferred from amplified fragment length polymorphism (AFLP) fingerprints. Molecular Ecology 9: 901-906. https://doi.org/10.1046/j.1365-294x.2000.00943.x
  32. Tamura K., D. Peterson, N. Peterson, G. Stecher, M. Nei and S. Kumar. 2011. MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Molecular Biology and Evolution 28: 2731-2739. https://doi.org/10.1093/molbev/msr121
  33. Tian, B., H. Q. Yang, K. M. Wong, A. Z. Liu and Z. Y. Ruan. 2012. ISSR analysis shows low genetic diversity versus high genetic differentiation for giant bamboo, Dendrocalamus giganteus (Poaceae: Bambusoideae), in China populations. Genetic Resources and Crop Evolution 59: 901-908. https://doi.org/10.1007/s10722-011-9732-3
  34. Triplett, J. K., K. A. Oltrogge and L. G. Clark. 2010. Phylogenetic relationships and natural hybridization among the North American woody bamboos (Poaceae: Bambusoideae: Arundinaria). American Journal of Botany 97: 471-492. https://doi.org/10.3732/ajb.0900244
  35. Tsuyama I., K. Nakao, T. Matsui, M. Higa, M. Horikawa, Y. Kominami and N. Tanaka. 2011. Climatic ontrols of a keystone understory species, Sasamorpha borealis, and an impact assessment of climate change in Japan. Annals of Forest Science 68: 689-699. https://doi.org/10.1007/s13595-011-0086-y
  36. Vos, P., R. Hogers, M. Bleeker, M. Reijans, T. Lee, M. Hornes, A. Friters, J. Pot, J. Paleman and M. Kuiper. 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research 23: 4407-4414. https://doi.org/10.1093/nar/23.21.4407
  37. Yeh, F. C., R. C. Yang, T. B. Boyle, Z. H. Ye and J. X. Mao. 1997. POPGENE, the user-friendly shareware for population genetic analysis. Molecular Biology and Biotechnology Centre, University of Alberta, Edmonton, Alberta.
  38. Yim, Y. J. and T. Kira. 1977. Distribution of forest vegetation and climate in the Korean peninsula III. Distribution of tree species along the thermal gradient. Japanese Journal of Ecology 27: 177-189.
  39. Zhang, W. and L. G. Clark. 2000. Phylogeny and classification of the Bambusoideae (Poaceae). In Grasses: Systematics and Evolution. Jacobs, S. W. L., J. Everett (eds.), Csiro Publishing, Australia. Pp. 35-42.

Cited by

  1. Bajos niveles de variación isoenzimática en las poblaciones sureñas del arbusto endémico de Corea Sophora koreensis (Fabaceae): implicaciones para su conservación vol.36, pp.0010-0730, 2017, https://doi.org/10.3989/collectbot.2017.v36.006
  2. Phylogeographical Study of Camellia japonica Inferred from AFLP and Chloroplast DNA Haplotype Analyses vol.62, pp.1, 2019, https://doi.org/10.1007/s12374-017-0292-8
  3. 조릿대는 왜 평생 한 번 대규모로 꽃을 피우고 죽는가? -조릿대 개화지의 외적 환경인자 분석 및 그 생활사 전략- vol.31, pp.6, 2017, https://doi.org/10.13047/kjee.2017.31.6.564