DOI QR코드

DOI QR Code

Vibration Control of the Framed Building Structures Using KGDS System with Isotropic Damping Devices

등방성 감쇠장치를 갖는 KGDS시스템을 활용한 라멘조 건물의 제진효과

  • Received : 2014.08.25
  • Accepted : 2014.10.20
  • Published : 2015.03.30

Abstract

In this paper, the vibration control effect of the isotropic damping devices (so-called Kagome dampers) was investigated by applying the Kagome dampers to a 20-story frame structure apartment. A new Kagome Damper System (KGDS) composed of the dampers and supporting column was proposed and numerical analyses were performed to investigate the effects of stiffness ratio between controlled structure and supporting column, the damper size and the number of the dampers. The numerical analysis results of a structure with KGDS up to the third story showed that the stiffness ratio should be higher than 6.4 and the damper size be at least $700{\times}700mm$ to effectively reduce the base shear and the maximum drift of the uppermost story. When the KGDS was installed up to the fifth story, the stiffness ratio should be higher than 7.0 and damper size needs to be at least $500{\times}500mm$ for obtaining the target performance.

본 논문에서는 효과적인 제진설계를 구현하기 위한 설계기술 개발의 일환으로 20층 라멘조 형식의 공동주택을 대상으로 최근 개발된 등 방성감쇠장치 (일명 카고메감쇠장치)를 적용하여 대상구조물-카고메감쇠장치-지지구조물로 구성된 새로운 형식의 시스템 (Kagome Damper System : KGDS)을 제안하고, 대상구조물과 지지구조물의 강성차, 감쇠장치의 크기 및 지지구조물의 적용 층수 등을 변수로 수치해석을 수행하여 제진효과를 검토해 보았다. 해석결과, 밑면전단력과 최상층 최대응답변위 감소라는 관점에서 유효한 제진효과를 얻기 위해서는 지지구조물을 3개층 높이로 설치할 경우, 대상구조물과 지지구조물 간의 강성비는 약 6.4배 이상, 감쇠장치의 사이즈는 $700{\times}700mm$ 이상을 확보할 필요가 있으며, 지지구조물을 5개층 높이로 설치할 경우에는 대상구조물과 지지구조물 간의 강성비는 약 7.0배 이상, 감쇠장치의 사이즈는 $500{\times}500mm$ 이상을 확보할 필요가 있는 것으로 판단된다.

Keywords

References

  1. Architectural Institute of Korea (2009), Building code and Commentary, KBC Committee (in Korean).
  2. ASCE (2010), ASCE/SEI7-10 Minimum Design Loads for Buildings and Other Structures, Reston: American Society of Civil Engineers, 179-197.
  3. Chun, Y. S., Hur, M. W. (2014), Influence of the Beam -Column Stiffness ratio on Passive supplemental Dampeing, Journal of KSMI, 18(1), 700-702 (in Korean).
  4. Hwang, J. S., Park, S. C., Kang, K. J. (2013), A Study on the Hysteresis properties and Mathematical Model of Kagome Truss Damper, Architectural Institute of Korea, 29(9), 21-29.
  5. Ko, G. D., Joo, J. H., Hwang, J. S., and Kang, K. J. (2010), Application of Wire-woven Bulk Kagome as a Vibration Control Device for a Building Structure, SB10.
  6. Lee, D., and Taylor, D. P. (2002), Viscous Damper Development and future Trends, Structural Design Tall Building 10, 311-320.
  7. Lee, H. H., Kim, S. I. (2010), Metalic Damper Shape and Cyclic Behavior for the Seismic Capacity Improvement of Building Structures, Journal of Korea institute for Structural Maintenance Inspection, 14(3), 123-130.
  8. Oh, S. H., Kim, Y. J., Tyu, H. S., Choi, H. B., Kang, C. H. (2005), Hysteresis Behavior of Beam-to-Column Connections with Elasto-Plastic Hysteretic Dampers, Architectural Institute of Korea, 25(1), 635-638.

Cited by

  1. Vibration Control Effect of the Framed Building Structures according to the Stiffness Ratio of Exo-type Damping System and Damper Device Yield Ratio vol.19, pp.5, 2015, https://doi.org/10.11112/jksmi.2015.19.5.038
  2. Inelastic Seismic Response Control of the RC Framed Apartment Building Structures Using Exterior-Installed Kagome Damping System vol.20, pp.3, 2016, https://doi.org/10.11112/jksmi.2016.20.3.058
  3. 계단 설치형 카고메 감쇠시스템을 활용한 철근콘크리트 라멘조 공동주택의 지진응답 개선 vol.22, pp.5, 2015, https://doi.org/10.11112/jksmi.2018.22.5.023