DOI QR코드

DOI QR Code

Strength of CNT Cement Composites with Different Types of Surfactants and Doses

분산제의 종류 및 사용량에 따른 CNT 보강 시멘트 복합체의 강도변화

  • Received : 2014.08.27
  • Accepted : 2014.11.10
  • Published : 2015.03.30

Abstract

This study was aimed to investigate the difference in strength of Carbon Nanotube (CNT) reinforced cement mortars with different types of surfactants and doses. In the experimental program, CTAB, SDBS and TX10 which were common surfactants adopted to improve CNTs dispersion in fabricating CNT composites in many industrial fields were included and superplasticizer which was revealed to be effective to disperse CNTs especially in CNT reinforced cementitious composites were added as well. Superplasticizer presented less strength reduction in cement mortar and more strength gain by adding CNTs among four types of surfactants. Higher dosage of superplasticizer caused lower strength of cement mortar. Adding CNTs of 0.4 wt.% or less to cement didn't show strength enhancement by adding CNTs but 0.8 wt.% of CNTs resulted in strengthening effect after all. Finally, a combination of 0.1 wt.% of CNTs, superplasticizer and sonication treatment could lead to strength improvement by adding CNTs in cement mortar.

이 연구는 탄소나노튜브의 우수한 역학적 특성을 시멘트재료에 활용하여 역학적인 특성을 향상시키고자 현재 탄소나노튜브를 활용하고 있는 분야에서 탄소나노튜브의 분산성을 향상시키는데 사용되고 있는 계면활성제인 CTAB, SDBS, TX10 및 문헌조사를 통하여 유효하다 알려진 고성능감수제와 탄소나노튜브를 혼합한 모르타르 강도 시험체를 제작하여, 계면활성제 종류에 따른 특성 및 사용량에 따른 복합체의 강도변화를 평가하였다. 계면활성제 중에서는 고성능감수제가 작은 강도저하 현상 및 CNT 보강에 따른 높은 강도향상 효과를 나타내었다. 고성능감수제의 사용량에 따른 강도변화에서는 사용량 증가에 따라 실험체의 강도는 감소하였으며, CNT 보강에 따른 강도향상 효과는 시멘트 중량 대비 0.4% 이하에서는 나타나지 않으며 0.8%이상의 사용량에서 나타났다. 마지막으로 CNT의 사용량을 감소시키고 초음파로 처리한 탄소나노튜브를 보강한 시험체의 경우 탄소나노튜브를 혼합하지 않은 실험체보다 강도가 증가하는 결과를 얻을 수 있었다.

Keywords

References

  1. Chan, L. Y., and Andrawes, B. (2010), Finite element analysis of carbon nanotube/cement composite with degraded bond strength, Computational Materials Science, 47(4), 994-1004. https://doi.org/10.1016/j.commatsci.2009.11.035
  2. Ferro, G., Tulliani, J., and Musso, S. (2011), Carbon Nanotubes Cement Composites, Proceedings of Cassino (FR), Italia, 13-15, 49-59.
  3. Ijiima, S. (1991), Helical microtubules of graphitic carbon, Nature, 354, 56-58. https://doi.org/10.1038/354056a0
  4. Ipperico, M., Ferro, G., Musso, S., Tulliani, J. M., and Tagliaferro (2009), Calcestruzzo autocompattante nanorinforzato (CNTSCC): proprieta meccaniche e potenzialita, A. Atti del $20^{\circ}$ Convegno Nazionale del Gruppo Italiano Frattura (IGF), Torino, Italy, 103-112.
  5. Kang, S. T., and Park, S. H. (2014), Experimental Study on Improving Compressive Strength of MWCNT Reinforced Cementitious Composites, 26(1), 63-70 (in Korean, with English abstract). https://doi.org/10.4334/JKCI.2014.26.1.063
  6. Konsta-Gdoutos, M. S., Metaxa, Z. S., and Shah, S. P. (2010), Highly dispersed carbon nanotube reinforced cement based materials, Cement and Concrete Research, 40, 1052-1059. https://doi.org/10.1016/j.cemconres.2010.02.015
  7. Konsta-Gdoutos, M. S., Metaxa, Z. S., and Shah, S. P. (2010), Multi-scale mechanical and fracture characteristics and early-age straing capacity of high performance carbon nanotube/cement nanocomposites, Cement and Concrete Composites, 32(2), 110-115. https://doi.org/10.1016/j.cemconcomp.2009.10.007
  8. Li, G. Y., Wang, P. M., and Zhao, X. (2005), Mechanical behavior and microstructures of cement composites incorporating surface-treated multi-walled carbon nanotubes, Carbon, 43(6), 1239-1245. https://doi.org/10.1016/j.carbon.2004.12.017
  9. Li, G. Y., Wang, P. M., Zhao, X. (2007), Pressure-sensitive and microstructure of carbon nanotube reinforced cement composites, Cement and Concrete Composites, 29(5), 377-382. https://doi.org/10.1016/j.cemconcomp.2006.12.011
  10. Luo, J., Duan, Z., and Li, H. (2009), The influence of surfactant on the processing of multi-walled carbon nanotubes in reinforced cement matrix composites, Physica Status Solidi A, 206(12), 2783-2790.
  11. Makar, J. M., Margeson, J., and Luh, J. (2005), Carbon Nanotube/Cement Composites-Early Results and Potential Applications, Proceedings of the 3rd International Conference on Construction Materials: Performance, Innovations and Structural Implications, Vancouver, Canada, 1-10.
  12. Rana, A. K., Rana, S. B., and Chaipanich, A. (2009), Significance of nanotechnology in construction engineering, International Journal of Recent Trends in Engineering, 4, 46-48.
  13. Sanchez, F., and Ince, C. (2009), Microstructure and macroscopic properties of hybrid carbon nanofiber/silica fume cement composites, Composites Science and Technology, 69, 1310-1318. https://doi.org/10.1016/j.compscitech.2009.03.006
  14. Yun, C. H., and Lee, H. S. (2007), Carbon Nanotube Composites, Polymer Science and Technology, 18(1), 4-7.
  15. Zhi, G., and Gao, Z. (2008), Applications of nanotechnology and nanomaterials in construcion, Proceedings of the 1st International Conference on Construction on Developing Countries (ICCIDC-1 '08), Advancing and Integrating Construction Education, Research & Practice, Pakistan, Iran.

Cited by

  1. CNT 첨가량에 따른 시멘트의 역학성능 및 미세구조의 영향 vol.21, pp.6, 2015, https://doi.org/10.11112/jksmi.2017.21.6.162
  2. MWCNT가 첨가된 시멘트복합체의 수화 및 전기저항 특성 vol.20, pp.1, 2020, https://doi.org/10.5345/jkibc.2020.20.1.011
  3. MWCNT가 첨가된 시멘트복합체의 수화 및 전기저항 특성 vol.20, pp.1, 2020, https://doi.org/10.5345/jkibc.2020.20.1.011
  4. Influence of Powder and Liquid Multi-Wall Carbon Nanotubes on Hydration and Dispersion of the Cementitious Composites vol.10, pp.21, 2020, https://doi.org/10.3390/app10217948
  5. Sulfuric Acid Resistance of CNT-Cementitious Composites vol.11, pp.5, 2021, https://doi.org/10.3390/app11052226
  6. Influence of CNT Incorporation on the Carbonation of Conductive Cement Mortar vol.14, pp.21, 2015, https://doi.org/10.3390/ma14216721