DOI QR코드

DOI QR Code

Evaluation for Rock Cleavage Using Distribution of Microcrack Lengths

미세균열의 길이 분포를 이용한 결의 평가

  • Park, Deok-Won (Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources)
  • 박덕원 (한국지질자원연구원 지구환경연구본부)
  • Received : 2015.05.14
  • Accepted : 2015.07.12
  • Published : 2015.09.30

Abstract

Jurassic granite from Geochang was analysed with respect to the characteristics of the rock cleavage. The phases of distribution of microcracks were well evidenced from the enlarged photomicrographs(${\times}6.7$) of the thin section. In this study, the length - cumulative frequency diagrams were used for expressing the distribution characteristics of microcrack. The diagrams for the six directions were arranged in the magnitude of density(${\rho}$). These diagrams show an order of H2 < H1 < G2 < G1 < R2 < R1 from the related chart. Among six diagrams, the diagram for hardway 2(H2) occupies the lowermost region on the left. On the contrary, the diagram for rift 1(R1) occupies the uppermost region on the right. Curve patterns of the two diagrams change from uniform to exponential distribution type in accordance with the increased density. The overall distribution characteristics of the diagrams were well evidenced from the magnitude of the exponent(${\lambda}$) and length of line oa related to the exponential straight line. The magnitude of exponent governing the values of slope(${\theta}$) is inversely proportional to the values of microcrack parameters such as number(N), length(L) and density. On the contrary, length of line oa is directly proportional to the values of the above three parameters. Above microcrack parameters related to the order of arrangement of diagrams show an order of hardway(H1 + H2) < grain(G1 + G2) < rift(R1 + R2). The distribution characteristics of progressive variation are found among the six diagrams. The order of arrangement of the diagrams indicates a relative magnitude of the rock cleavage. Meanwhile, the parameters such as slope, exponent, density and length of line oa were arranged in an order of H2 < H1 < G2 < G1 < R2 < R1. The variation curves of a smooth quadratic function are shown from the related chart. From the correlation chart between density and the above parameters, a common regularity following power-law correlation function was derived. Finally, the analysis for the rock cleavage was conducted through the combination between the diagram and microcrack parameter. This type of combination contribute to the progressivity in evaluation for the rock cleavage.

거창지역의 쥬라기 화강암에 대하여 결의 특성에 대한 분석을 실시하였다. 미세균열의 분포상은 박편의 확대사진(${\times}6.7$)에서 잘 확인되었다. 본 연구에서는 미세균열의 분포 특성을 표현하기 위하여 길이-누적 빈도 도표를 사용하였다. 여섯 방향의 도표를 밀도(${\rho}$)의 강도 순으로 배열하였다. 관계도에서 이들 도표들은 H2 < H1 < G2 < G1 < R2 < R1의 순서로 나타난다. 여섯 도표들 중에서, 하드웨이 2(H2)의 도표가 좌측의 최하위 영역을 차지한다. 반면에, 리프트 1(R1)의 도표가 우측의 최상위 영역을 차지한다. 두 도표의 곡선 형태는 밀도의 증가에 따라 균등분포에서 지수함수의 분포형으로 변화한다. 도표들의 전반적인 분포 특성은 지수 직선과 관련이 있는 지수(${\lambda}$)의 크기 및 선 oa의 길이에서 잘 확인되었다. 기울기(${\theta}$)의 값을 지배하는 지수의 크기는 수(N), 길이(L) 및 밀도와 같은 모수의 값과 반비례를 한다. 반면에, 선 oa의 길이는 위의 3개 모수의 값과 정비례를 한다. 도표의 배열 순과 관련이 있는 상기 미세균열의 모수들은 3번 결(H1 + H2) < 2번 결(G1 + G2) < 1번 결(R1 + R2)의 순서로 나타난다. 여섯 도표 사이에서는 점진적인 변화를 하는 분포 특성을 볼 수 있다. 도표의 배열 순은 결의 상대적인 강도를 지시한다. 한편 기울기, 지수, 밀도 및 선 oa의 길이와 같은 모수들을 H2 < H1 < G2 < G1 < R2 < R1의 순으로 배열하였다. 관계도에서는 부드러운 이차함수의 변화 곡선을 볼 수 있다. 밀도 그리고 상기한 모수들 사이의 상관도로부터, 멱법칙 함수를 따르는 공통적인 규칙성을 도출하였다. 마지막으로, 결에 대한 분석은 도표 그리고 미세균열의 모수 사이의 결합을 통하여 수행되었다. 이러한 유형의 결합은 결의 평가에 있어서 진보성에 기여한다.

Keywords

References

  1. Akesson, U., Hanssen, J. and Stigh, J., 2003, Characterisation of microcracks in the Bohus granite, western Sweden, caused by uniaxial cyclic loading. Engineering Geology, 72, 131-141.
  2. Chae, B.G. and Seo, Y.S., 2011, Homogenization analysis for estimating the elastic modulus and representative elementary volume of Inada granite in Japan. Geosciences Journal, 15, 387-394. https://doi.org/10.1007/s12303-011-0035-7
  3. Cladouhos, T.T. and Marret, R., 1996, Are fault growth and linkage models consistent with power-law distributions of fault lengths?. Journal of Structural Geology, 18, 281-293. https://doi.org/10.1016/S0191-8141(96)80050-2
  4. Douglass, P.M. and Voight, B., 1969, Anisotropy of granites: A reflection of microscopic fabric. Geotechnique, 19, 376-398. https://doi.org/10.1680/geot.1969.19.3.376
  5. Dunne, J.A., Williams, R.J. and Martinez, N.D., 2002, Food-web structure and network theory: The role of connectance and size. Proceedings of the National of Sciences of the United States of America (PNAS), 99, 12917-12922.
  6. Flodin, E.A. and Aydin, A., 2004, Evolution of a strike-slip fault network, Valley of Fire State Park, southern Nevada. Geological Society of America Bulletin, 116, 42-59. https://doi.org/10.1130/B25282.1
  7. Fossen, H. and Rornes. A., 1996, Properties of fault populations in the Gullfaks Field, northern North Sea. Journal of Structural Geology, 18, 179-190. https://doi.org/10.1016/S0191-8141(96)80043-5
  8. Hadley, K., 1976, Comparison of calculated and observed crack densities and seismic velocities of Westerly granite. Journal of Geophysical Research, 81, 3484-3494. https://doi.org/10.1029/JB081i020p03484
  9. Jang, B.A., Kim, Y.H., Kim, J.D. and Rhee, C.G., 1998, Microcrack development in the Pocheon granite due to cyclic loading. The Journal of Engineering Geology, 8, 275-284.
  10. Jang, B.A. and Oh, S.H., 2001, Mechanical anisotropy development on the rock fabric in the Pocheon granite and its relationship eith microcracks. The Journal of Engineering Geology, 11, 191-203.
  11. Jang, T.W., Kim, C.S. and Bae, D.S., 2003, Characteristics of fracture systems in Southern Korea. The Journal of Engineering Geology, 13, 207-225.
  12. Jang, T.W., Lee, H.W., Chae, B.G., Seo, Y.S. and Cho, Y.C., 2007, Geometric analysis of fracture system and suggestion of a modified RMR on volcanic rocks in the vicinity of Ilgwang fault. The Journal of Engineering Geology, 17, 483-494.
  13. Kang, T.H., Kim, K.Y., Park, D.W., Shin, H.S., 2014, Influence of anisotropy of microcrack distribution in Pocheon granite rock on elastic Resonance characteristics. The Journal of Engineering Geology, 24, 363-372. https://doi.org/10.9720/kseg.2014.3.363
  14. Kim, D.H., Hwang, J.H., Park, K.H. and Song, K.Y., 1998, Geological report of the Pusan sheet (1:250,000). Korea Institute of Geology, Mining and Materials (KIGAM), 62p
  15. Koike, K., Ichikawa, Y. 2006, Spatial correlation structures of fracture systems for deriving a scaling law and modeling fracture distributions. Computer & Geosciences, 32, 1079-1-1095. https://doi.org/10.1016/j.cageo.2006.02.013
  16. Koukouvelas, I., Asimakopoulos, M. and Doutsos, T., 1999, Fractal characteristics of active normal faults: an example of the eastern Gulf of Corinth, Greece. Tectonophysics, 308, 263-274. https://doi.org/10.1016/S0040-1951(99)00087-6
  17. Kranz, R.L., 1979, Crack growth and development during creep of Barre granite. International Journal of Rock Mechanics and Mining, 16, 23-35.
  18. Kranz, R.L., 1980, The effect of confining pressure and stress difference on static fatigue of granite. Journal of Geophysical Research, 85, 1854-1866. https://doi.org/10.1029/JB085iB04p01854
  19. Kranz, R.L., 1983, Microcrack in rocks:a review. Tectonophysics, 100, 449-480. https://doi.org/10.1016/0040-1951(83)90198-1
  20. Lee, B.D., Jang, B.A., Yun, H.S., Lee, H.Y. and Jin, M.S., 1999, Characteristics of microcrack development in granite of the Mungyeong area in Korea. The Journal of the Petrological Society of Korea, 8, 24-33.
  21. Mansfield, C. and Cartwright, J., 2001, Fault growth by linkage: observation and implications from analogue models. Journal of Structural Geology, 23, 745-763. https://doi.org/10.1016/S0191-8141(00)00134-6
  22. Marrett, R and Allmendinger, R.W., 1992, Amount of extension on small faults: An example from the Viking graben. Geology, 20, 47-50. https://doi.org/10.1130/0091-7613(1992)020<0047:AOEOSF>2.3.CO;2
  23. Nishiyama, T., Chen, Y., Kusuda, Ito, T., Kaneko, K., Kita, H. and Sato, T., 2002, The examination of fracturing process subjected to triaxial compression test in Inada granite. Engineering Geology, 66, 257-269. https://doi.org/10.1016/S0013-7952(02)00046-7
  24. Odling, N., 1997, Scaling and connectivity of joint system in sandstones from Western Norway. Journal of Structural Geology, 19, 1257-1271. https://doi.org/10.1016/S0191-8141(97)00041-2
  25. Park, D.W., 2005, Mechanical anisotropy of Pocheon granite under uniaxial compression. The Journal of Engineering Geology, 3, 337-348.
  26. Park, D.W., 2007, Orientations of vertical rift and grain planes in Mesozoic granites, Korea. The Journal of the Petrological Society of Korea, 16, 12-26.
  27. Park, D.W., 2009, Microcrack orientations in Tertiary crystalline tuff from Northeastern Gyeongsang Basin. The Journal of the Petrological Society of Korea, 18, 115-135.
  28. Park, D.W., 2011, Characteristics of the rock cleavage in Jurassic granite, Hapcheon. The Journal of the Petrological Society of Korea, 20, 219-230. https://doi.org/10.7854/JPSK.2011.20.4.219
  29. Park, D.W., Kim, H.C., Lee, C.B., Hong, S.S., Chang, S.W. and Lee, C.W., 2004, Characteristics of the rock cleavage in Jurassic granite, Pocheon. The Journal of the Petrological Society of Korea, 13, 133-141.
  30. Park, D.W. and Lee, C.B., 2010, Characteristics of fracture system in Precambrian metamorphic rocks and Mesozoic granites from Seokmo-do, Ganghwagun. The Journal of the Petrological Society of Korea, 19, 123-139.
  31. Park, D.W., Seo, Y.S., Jeong, G.C. and Kim, Y. K., 2001, Microscopic analysis of the rock cleavage for Jurassic granite in Korea. The Journal of Engineering Geology, 11, 51-62.
  32. Peng, S.S and Johnson, A.M., 1972, Crack growth and faulting in cylindrical specimens of Chelmsford granite. International Journal of Rock Mechanics and Mining, 9, 37-86. https://doi.org/10.1016/0148-9062(72)90050-2
  33. Plumb, R., Engelder, T. and Yale, D., 1984, Nearsurface in-situ stress, 3. Correlation with microcrack fabric within the New Hampshire Granites. Journal of Geophysical Research, 89, 9350-9364. https://doi.org/10.1029/JB089iB11p09350
  34. Segall, P., 1984, Formation and growth of extensional fracture sets. Geological Society of America Bulletin, 95, 454-462. https://doi.org/10.1130/0016-7606(1984)95<454:FAGOEF>2.0.CO;2
  35. Seo Y.S. and Jeong, G.C., 1999, Micro-damage process in granite under the state of water-saturated triaxial compression. The Journal of Engineering Geology, 9, 243-251.
  36. Seo, Y.S., Jeong, G.C., Kim, J.S., and Ichikawa, Y., 2002, Microscopic observation and contact stress analysis of granite under compression. Engineering Geology, 63, 259-275. https://doi.org/10.1016/S0013-7952(01)00086-2
  37. Simmon, G., Todd, T. and Baldridge, W.S., 1975, Toward a quantitative relationship between elastic properties and cracks in low porosity rocks. American Journal of Science, 275, 318-345. https://doi.org/10.2475/ajs.275.3.318
  38. Streckeisen, A.L., 1976, To each plutonic rocks and its proper name. Earth-science reviews, 12, 1-33. https://doi.org/10.1016/0012-8252(76)90052-0
  39. Swanson, M.T., 2006, Late Paleozoic strike-slip faults and related vein array of Cape Elizabeth, Maine. Journal of Structural Geology, 28, 456-473. https://doi.org/10.1016/j.jsg.2005.12.009
  40. Takemura, T. and Oda, M., 2004, Stereology-based fabric analysis of microcracks in damaged granite. Tectonophysics, 387, 131-150. https://doi.org/10.1016/j.tecto.2004.06.004
  41. Tapponier, P. and Brace, W.F., 1976, Development of stress-induced microcracks in Westerly granite. International Journal of Rock Mechanics and Mining Sciences, 13, 103-112. https://doi.org/10.1016/0148-9062(76)91937-9
  42. Thill, R.E., Bur, T.R. and Steckley, R.C., 1973, Velocity anisotropy in dry and saturated rock spheres and its relation to rock fabric. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 10, 535-557. https://doi.org/10.1016/0148-9062(73)90004-1
  43. Thill, R.E., Williard, R.J. and Bur, T.R., 1969, Correlation of longitudinal velocity variation with rock fabric. Journal of Geophysical Research, 74, 4898-4909.
  44. Watterson, J., Walsh, J.J., Gillespie, P.A. and Easten, S., 1996, Scaling systematics of fault sizes on a largescale fault map. Journal of Structural Geology, 18, 199-214. https://doi.org/10.1016/S0191-8141(96)80045-9
  45. Wawersik, W.R. and Brace, W.F., 1971, Post-failure behaviour of a granite and diabase. Rock Mechanics, 3, 61-85. https://doi.org/10.1007/BF01239627
  46. Wojtal, S., 1994, Fault scaling laws and the temporal evolution of fault systems. Journal of Structural Geology, 603-612.
  47. Wong, T.-F., 1982, Micromechanics of faulting in Westerly granite. International Journal of Rock Mechanics and Mining, 19, 49-64.

Cited by

  1. Evaluation for Rock Cleavage Using Distribution of Microcrack Spacings (III) vol.25, pp.4, 2016, https://doi.org/10.7854/JPSK.2016.25.4.311
  2. Evaluation for Rock Cleavage Using Distribution of Microcrack Spacings (I) vol.25, pp.1, 2016, https://doi.org/10.7854/JPSK.2016.25.1.13
  3. Evaluation for Rock Cleavage Using Distribution of Microcrack Spacings (II) vol.25, pp.2, 2016, https://doi.org/10.7854/JPSK.2016.25.2.151
  4. Editorial : 2015, Applied petrology: Dimension stone, Aggregate, Stone cultural heritage vol.24, pp.3, 2015, https://doi.org/10.7854/JPSK.2015.24.3.149