DOI QR코드

DOI QR Code

Three-dimensional geologic modeling of the Pohang Basin in Korea for geologic storage of carbon dioxide

이산화탄소 지중 저장을 위한 한국 포항분지의 삼차원 지질 모델링

  • Park, Jai-Yong (School of Earth and Environmental Sciences, Seoul National University) ;
  • Kim, Jun-Mo (School of Earth and Environmental Sciences, Seoul National University) ;
  • Yoon, Seok-Hoon (Department of Earth and Marine Sciences, Jeju National University)
  • 박재용 (서울대학교 지구환경과학부) ;
  • 김준모 (서울대학교 지구환경과학부) ;
  • 윤석훈 (제주대학교 지구해양과학과)
  • Received : 2015.03.09
  • Accepted : 2015.06.11
  • Published : 2015.06.30

Abstract

A series of three-dimensional geologic modeling is performed using a three-dimensional geologic model to characterize quantitatively and visualize realistically geologic structures and formations in the Pohang Basin, which is considered as a prospective coastal sedimentary basin for geologic storage of carbon dioxide, distributed in Pohang-Si and Yeongil Bay, Korea. First, three-dimensional structural modeling is performed using the digital elevation model (DEM) with the surface geologic map and offshore geologic cross-sections, the virtual boreholes with the geologic structure informations, and the discrete smooth interpolation (DSI) method to predict distributions of faults. Second, three-dimensional stratigraphic modeling is performed using the digital elevation model with the surface geologic map and offshore geologic cross-sections, the virtual boreholes with the geologic formation informations, and the discrete smooth interpolation method to predict distributions of geologic formation boundaries. Third, three-dimensional grid modeling is performed based on the faults of the three-dimensional structural model and the geologic formation boundaries of the three-dimensional stratigraphic model to dicretize spaces between the faults and geologic formation boundaries into hexahedral grids. Fourth, three-dimensional geologic formation modeling is performed polymerizing the three-dimensional structural model, stratigraphic model, and grid model to visualize distributions of geologic formations. Finally, selection of reservoir and cap rocks, evaluation of storage capacities of reservoir rocks, and suggestion of injection locations for geologic storage of carbon dioxide in the Pohang Basin are performed using the results of the series of three-dimensional geologic modeling. As a result, the Fluvial Conglomerate and Sandstone (FCSS) and Shallow Marine Sandstone (SMSS) are selected as reservoir rocks, and the Interlayered Sandstone and Mudstone (ISMS) and Marine Mudstone (MRMS) are selected as cap rocks. The theoretical storage capacity of the whole reservoir rocks (Fluvial Conglomerate and Sandstone, Shallow Marine Sandstone) is evaluated as 8,913.65 Mton, and their effective storage capacity is evaluated as 222.84 Mton. In addition, two different injection locations, where the depth and thickness of the reservoir rocks are favorable for geologic storage of carbon dioxide, are suggested. The three-dimensional geologic modeling technologies and results presented in this study can be very usefully utilized in quantitative characterization and realistic visualization of geologic structures and formations in prospective sedimentary basins for geologic storage of carbon dioxide, and thus hereafter can provide practical guidelines for site selection, behavior prediction, performance evaluation, injection operation design, and leakage risk analysis at the stages of demonstration and commercialization projects of geologic storage of carbon dioxide.

이산화탄소 지중 저장을 위한 유망 연안 퇴적분지로 고려되고 있는 한국 포항시와 영일만 일대에 분포하는 포항분지 내 지질 구조 및 지층을 정량적으로 특성화하고 사실적으로 가시화하기 위하여 삼차원 지질 모델링 기술을 이용한 일련의 삼차원 지질 모델링을 수행하였다. 첫 번째로 지표 지질도와 해저 지질 단면도가 반영된 수치 표고 모델(DEM) 및 지질 구조 정보를 포함한 가상 시추공을 사용하여 단층 분포를 예측하는 삼차원 구조 모델링을 불연속 평활 보간법(DSI)을 이용하여 수행하였다. 두 번째로 지표 지질도와 해저 지질 단면도가 반영된 수치 표고 모델 및 지층 정보를 포함한 가상 시추공을 사용하여 지층 경계면 분포를 예측하는 삼차원 층서 모델링을 불연속 평활 보간법을 이용하여 수행하였다. 세 번째로 삼차원 구조 모델의 단층 및 삼차원 층서 모델의 지층 경계면에 기초하여 단층 및 지층 경계면 사이의 공간을 육면체 격자로 이산화하는 삼차원 격자 모델링을 수행하였다. 네 번째로 삼차원 구조 모델, 층서 모델 및 격자 모델을 중합하여 지층 분포를 가시화하는 삼차원 지층 모델링을 수행하였다. 마지막으로 이러한 일련의 삼차원 지질 모델링 결과를 사용하여 포항분지 내 이산화탄소 지중 저장을 위한 저장암과 덮개암 선정, 저장암의 저장 용량 평가 및 주입 위치 제안을 수행하였다. 그 결과 저장암으로는 하성 역암 및 사암층(FCSS)과 천해성 사암층(SMSS)이 선정되었으며, 덮개암으로는 사암 및 이암 교호층(ISMS)과 해성 이암층(MRMS)이 선정되었다. 그리고 이러한 저장암 전체(하성 역암 및 사암층, 천해성 사암층)의 이론 저장 용량은 8,913.65 Mton으로, 유효 저장 용량은 222.84 Mton으로 평가되었다. 또한 저장암의 심도와 두께가 이산화탄소 지중 저장에 유리한 두 군데의 주입 위치가 제안되었다. 이와 같이 본 연구를 통해서 제시된 삼차원 지질 모델링 기술과 결과들은 이산화탄소 지중 저장을 위한 유망 퇴적분지 내 지질 구조 및 지층을 정량적으로 특성화하고 사실적으로 가시화하는 데에 매우 유용하게 활용될 수 있으며, 따라서 향후 이산화탄소 지중 저장 실증 및 상용화 사업 단계에서 부지 선정, 거동 예측, 성능 평가, 주입 운영 설계 및 누출 위험 분석에 실용적인 지침을 제공할 수 있다.

Keywords

Acknowledgement

Supported by : 한국에너지기술평가원, 한국연구재단

References

  1. Cheon, Y., Son, M., Song, C.W., Kim, J.S. and Sohn, Y.K., 2012, Geometry and kinematics of the Ocheon Fault System along the boundary between the Miocene Pohang and Janggi basins, SE Korea, and its tectonic implications. Geosciences Journal, 16, 253-273. https://doi.org/10.1007/s12303-012-0029-0
  2. de Almeida, J.A., 2010, Stochastic simulation methods for characterization of lithoclasses in carbonate reservoirs. Earth-Science Reviews, 101, 250-270. https://doi.org/10.1016/j.earscirev.2010.05.002
  3. Domenico, P.A. and Schwartz, F.W., 1990, Physical and Chemical Hydrogeology. John Wiley and Sons, New York, USA, 824 p.
  4. Guyonnet-Benaize, C., Lamarche, J., Masse, J.P., Villeneuve, M. and Viseur, S., 2010, 3D structural modelling of small-deformations in poly-phase fault pattern: Application to the Mid-Cretaceous Durance uplift, Provence (SE France). Journal of Geodynamics, 50, 81-93. https://doi.org/10.1016/j.jog.2010.03.003
  5. Gwak, S.H. and Lee, D.S., 2001, 3-D visualization of reservoir characteristics through GOCAD. Geophysics and Geophysical Exploration, 4, 80-83 (in Korean with English abstract).
  6. Jeong, J. and Jang, W.I., 2011, Estimation of distribution of the weak soil layer for using geostatistics. Journal of the Korean Society of Marine Engineering, 35, 1132-1140 (in Korean with English abstract). https://doi.org/10.5916/jkosme.2011.35.8.1132
  7. Kaufmann, O. and Martin, T., 2008, 3D geological modelling from boreholes, cross-sections and geological maps, application over former natural gas storages in coal mines. Computers and Geosciences, 34, 278-290 (reprinted in 2009, 35, 70-82). https://doi.org/10.1016/j.cageo.2007.09.005
  8. Kim, D.H., Ryu, D.W., Lee, J.H., Choi, I.G., Kim, J.K. and Lee, W.J., 2010, Comparative studies of kriging methods for estimation of geo-layer distribution of Songdo International City in Incheon. Journal of the Korean Geotechnical Society, 26, 57-64 (in Korean with English abstract).
  9. Kim, H.C. and Lee, Y., 2007, Heat flow in the Republic of Korea. Journal of Geophysical Research, 112, B05413, doi:10.1029/2006JB004266.
  10. Kim, S. and Park, H.D., 2009, Development of software for mineral resource estimation and 3D modeling using variogram. Journal of the Korean Society of Mineral and Energy Resources Engineers, 46, 151-159 (in Korean with English abstract).
  11. Koo, C.M., Hong, C.W. and Jeon, S.W., 2006, Estimation of rock mass rating (RMR) and assessment of its uncertainty using conditional simulations. Tunnel and Underground Space, Journal of the Korean Society for Rock Mechanics, 16, 135-145 (in Korean with English abstract).
  12. Koo, C.M. and Jeon, S.W., 2005, Using conditional simulation to estimate rock mass properties and assess the uncertainty. Proceedings of the Korean Society for Rock Mechanics Spring Conference, Seoul, Korea, March 31, 81-95 (in Korean).
  13. Korea Hydrographic and Oceanographic Adminstration, 2011, Electronic navigational chart of Pohang Harbor Vicinity sheet, Scale 1:75,000. Sheet 175, Korea Hydrographic and Oceanographic Adminstration (KHOA), Busan, Korea, 1 sheet (DXF file).
  14. Lee, B.J., Choi, S.J., Chwae, U.C. and Ryoo, C.R., 1999, Characteristics of the Quaternary faulting of the Wolpyeong, Yangsan, S.E. Korea. Journal of the Geological Society of Korea, 35, 179-188 (in Korean with English abstract).
  15. Mallet, J.L., 1989, Discrete smooth interpolation. Association for Computing Machinery (ACM) Transactions on Graphics (TOG), 8, 121-144.
  16. Metz, B., Davidson, O., de Coninck, H.C., Loos, M. and Mayer, L.A. (eds.), 2005, Intergovernmental Panel on Climate Change Special Report on Carbon Dioxide Capture and Storage. Cambridge University Press, Cambridge, UK, 431 p.
  17. Na, J.Y., Lee, S.W. and Cho, K.D., 1991, A study on sea water and ocean current in the sea adjacent to Korea Peninsula, The vertical structure of temperatures in the East Sea of Korea. Bulletin of the Korean Fishery Society, 24, 215-228 (in Korean with English abstract).
  18. National Energy Technology Laboratory, 2007, Carbon Sequestration Atlas of the United States and Canada. National Energy Technology Laboratory (NETL), Pittsburgh, Pennsylvania, USA, 86 p.
  19. National Energy Technology Laboratory, 2008, Carbon Sequestration Atlas of the United States and Canada, Second Edition. National Energy Technology Laboratory (NETL), Pittsburgh, Pennsylvania, USA, 136 p.
  20. National Energy Technology Laboratory, 2010, Carbon Sequestration Atlas of the United States and Canada, Third Edition. National Energy Technology Laboratory (NETL), Pittsburgh, Pennsylvania, USA, 160 p.
  21. National Energy Technology Laboratory, 2012, The United States Carbon Utilization and Storage Atlas, Fourth Edition. National Energy Technology Laboratory (NETL), Pittsburgh, Pennsylvania, USA, 129 p.
  22. National Geographic Information Institute, 2013, Digital topographic maps of Cheongha, Chilpo, Pohang, Hwanho, Daebo, Yeonil, Yongdeok, and Guryongpo sheets, Scale 1:25,000. Sheets 369141, 369142, 369143, 369144, 369153, 359021, 359022, and 359031, National Geographic Information Institute (NGII), Suwon, Korea, 8 sheets (DXF files).
  23. Paradigm, 2012, GOCAD user guide. Manual, Paradigm, Houston, Texas, USA, various pages.
  24. Sohn, Y.K., Rhee, C.W. and Shon, H., 2001, Revised stratigraphy and reinterpretation of the Miocene Pohang basinfill, SE Korea: Sequence development in response to tectonism and eustasy in a back-arc basin margin. Sedimentary Geology, 143, 265-285. https://doi.org/10.1016/S0037-0738(01)00100-2
  25. Sohn, Y.K. and Son, M., 2004, Synrift stratigraphic geometry in a transfer zone coarse-grained delta complex, Miocene Pohang Basin, SE Korea. Sedimentology, 51, 1387-1408. https://doi.org/10.1111/j.1365-3091.2004.00679.x
  26. Spycher, N. and Pruess, K., 2005, $CO_2$-$H_2O$ mixtures in the geological sequestration of $CO_2$, II. Partitioning in chloride brines at $12-100^{\circ}C$ and up to 600 bar. Geochimica et Cosmochimica Acta, 69, 3309-3320. https://doi.org/10.1016/j.gca.2005.01.015
  27. Um. S.H., Lee, D.W. and Bak, B.S., 1964, Explanatory text of the geological map of Pohang sheet, Scale 1:50,000. Technical Report Sheet-7022-II, Geological Survey of Korea (GSK), Seoul, Korea, 37 p. 1 map sheet (in Korean and English).
  28. Vilain, D., 2010, 3D modelling and restoration of the Vargfors Basin, Certral Skellefte District, Northern Sweden, using gOcad and MOVE software. M.S. Thesis, Lulea University of Technology, Lulea, Sweden, 19 p.
  29. Wang, G. and Huang, L., 2012, 3D geological modeling for mineral resource assessment of the Tongshan Cu deposit, Heilongjiang Province, China. Geoscience Frontiers, 3, 483-491. https://doi.org/10.1016/j.gsf.2011.12.012
  30. Yoon, S.H., 2013, Offshore geologic cross-sections of the Pohang Basin, Korea. Unpublished Data, Jeju National University (JNU), Jeju, Korea, 6 sheets (in English).
  31. Zanchi, A., Francesca, S., Stefano, Z., Simone, S. and Graziano, G., 2009, 3D reconstruction of complex geological bodies: Examples from the Alps. Computers and Geosciences, 35, 49-69. https://doi.org/10.1016/j.cageo.2007.09.003

Cited by

  1. 이산화탄소 지중저장을 위한 포항분지 시추코어의 공극구조 분석 vol.26, pp.3, 2015, https://doi.org/10.7474/tus.2016.26.3.181
  2. 포항분지 해상 중소규모 CO2 저장 실증연구 vol.28, pp.2, 2015, https://doi.org/10.9720/kseg.2018.2.133
  3. 포항 이산화탄소 지중저장 시험 사이트 특성 vol.28, pp.2, 2015, https://doi.org/10.9720/kseg.2018.2.175
  4. 한국 이산화탄소 포집 및 저장 기술개발 및 상용화 추진 전략 제안 vol.51, pp.4, 2018, https://doi.org/10.9719/eeg.2018.51.4.381
  5. 여진을 통해 살펴본 대상구간의 응답특성 vol.34, pp.8, 2015, https://doi.org/10.7843/kgs.2018.34.8.51
  6. Ground‐Motion Amplifications in Small‐Size Hills: Case Study of Gokgang‐ri, South Korea, during the 2017 ML 5.4 Pohang Earthquake Sequence vol.109, pp.6, 2015, https://doi.org/10.1785/0120190064
  7. 부지응답해석을 이용한 지역별 대표 진도 산출 연구 vol.21, pp.1, 2020, https://doi.org/10.14481/jkges.2020.21.1.5
  8. 포항분지 영일층군 이암층의 수리지질학적 차폐능 평가: 수은 모세관 압입 시험의 결과 분석을 중심으로 vol.53, pp.1, 2020, https://doi.org/10.9719/eeg.2020.53.1.23
  9. Microtremor HVSR analysis of heterogeneous shallow sedimentary structures at Pohang, South Korea vol.17, pp.5, 2020, https://doi.org/10.1093/jge/gxaa035
  10. Pilot-Scale Groundwater Monitoring Network for Earthquake Surveillance and Forecasting Research in Korea vol.13, pp.17, 2015, https://doi.org/10.3390/w13172448