DOI QR코드

DOI QR Code

Synthesis and characterization of GTMAC grafted chitosan membranes for the dehydration of low water content isopropanol by pervaporation

  • Sajjan, Ashok M. (Department of Chemistry, Karnatak University) ;
  • Premakshi, H.G. (Department of Chemistry, Karnatak University) ;
  • Kariduraganavar, Mahadevappa Y. (Department of Chemistry, Karnatak University)
  • Received : 2012.11.14
  • Accepted : 2014.10.13
  • Published : 2015.05.25

Abstract

Glycidyltrimethylammonium chloride (GTMAC) grafted chitosan (CS) membranes were prepared by the solution casting technique. The chemical composition and morphological characteristics of the prepared GTMAC/CS membranes were investigated by various techniques such as Fourier transform infrared (FTIR) spectroscopy, wide-angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). The effects of grafting and feed composition on pervaporation performance of the membranes were systematically studied. The membrane containing 40 mass% of GTMAC exhibited the highest separation selectivity of 2133 with a flux of $6.91{\times}10^{-2}kg/m^2\;h$ at $30^{\circ}C$ for 10 mass% of water in the feed. The total flux and flux of water are almost overlapping each other, manifesting that these membranes could be used effectively to break the azeotropic point of water-isopropanol mixture. From the temperature dependent diffusion and permeation values, the Arrhenius activation parameters were estimated. The activation energy values obtained for water permeation ($E_{pw}$) are significantly lower than those of isopropanol permeation ($E_{pIPA}$), suggesting that the grafted membranes developed here have higher separation ability for water-isopropanol system. The positive heat of sorption (${\Delta}H_s$) values was obtained for all the grafted membranes, suggesting that the Henry's mode of sorption is predominant.

Keywords

References

  1. S. Kim, L. Chen, J.K. Johnson, E. Marand, J. Membr. Sci. 294 (2007) 147. https://doi.org/10.1016/j.memsci.2007.02.028
  2. L. Suarez, M.A. Diez, R. Garcia, F.A. Riera, J. Ind. Eng. Chem. 18 (2012) 1859. https://doi.org/10.1016/j.jiec.2012.05.015
  3. L.M. Vane, J. Chem. Technol. Biotechnol. 80 (2005) 603. https://doi.org/10.1002/jctb.1265
  4. F.A. Farhadpour, A. Bono, Chem. Eng. Process. 35 (1996) 141. https://doi.org/10.1016/0255-2701(95)04138-9
  5. T.M. Boudreau, G.A. Hill, Process Biochem. 41 (2006) 980. https://doi.org/10.1016/j.procbio.2005.11.006
  6. C. Wibowo, W.C. Chang, K.M. Ng, Am. Inst. Chem. Eng. 47 (2001) 2474. https://doi.org/10.1002/aic.690471111
  7. T. Jin, Y. Ma, W. Matsuda, Y. Masuda, M. Nakajima, K. Ninomiya, T. Hiraoka, J. Fukunaga, Y. Daiko, T. Yazawa, Desalination 280 (2011) 139. https://doi.org/10.1016/j.desal.2011.06.065
  8. Q. Li, P. Yu, Y. Lin, T. Zhu, Y. Luo, J. Ind. Eng. Chem. 18 (2012) 604. https://doi.org/10.1016/j.jiec.2011.11.039
  9. M. Soltanich, T. Zaarc-Asl, Chem. Eng. Commun. 153 (1996) 405.
  10. Y.L. Liu, Y.H. Su, K.R. Lee, J.Y. Lai, J. Membr. Sci. 251 (2005) 233. https://doi.org/10.1016/j.memsci.2004.12.003
  11. M.N.V.R. Kumar, R.A.A. Muzzarelli, C. Muzzarelli, H. Sashiwa, A.J. Domb, Chem. Rev. 104 (2004) 6017. https://doi.org/10.1021/cr030441b
  12. S.R. Jameela, A. Jayakrishnan, Biomaterials 16 (1995) 769. https://doi.org/10.1016/0142-9612(95)99639-4
  13. J.H. Kim, J.H. Kim, J. Jegal, K.H. Lee, J. Membr. Sci. 213 (2003) 273. https://doi.org/10.1016/S0376-7388(02)00534-3
  14. Z.Y. Jiang, Y.X. Yu, H. Wu, J. Membr. Sci. 280 (2006) 876. https://doi.org/10.1016/j.memsci.2006.03.006
  15. R. Jiraratananon, A. Chanchai, R.Y.M. Huang, J. Membr. Sci. 199 (2002) 211. https://doi.org/10.1016/S0376-7388(01)00699-8
  16. D. Van Baelen, B. Van der Broggen, K. Van den Dungen, J. Degreve, C. Vandecasteele, Chem. Eng. Sci. 60 (2005) 1583. https://doi.org/10.1016/j.ces.2004.10.030
  17. B.B. Lee, Z.L. Zu, F.A. Qusay, R. Lee, Desalination 193 (2006) 171. https://doi.org/10.1016/j.desal.2005.08.021
  18. A. Svang-Ariyaskul, R.Y.M. Huang, P.L. Douglas, R. Pal, X. Feng, P. Chen, L. Liu, J. Membr. Sci. 280 (2006) 815. https://doi.org/10.1016/j.memsci.2006.03.001
  19. P. Kanti, K. Srigowri, J. Madhuri, B. Smitha, S. Sridhar, Sep. Purif. Technol. 40 (2004) 259. https://doi.org/10.1016/j.seppur.2004.03.003
  20. J.H. Chen, Q.L. Liu, X.H. Zhang, Q.G. Zhang, J. Membr. Sci. 292 (2007) 125. https://doi.org/10.1016/j.memsci.2007.01.026
  21. V.V. Namboodiri, L.M. Vane, J. Membr. Sci. 306 (2007) 209. https://doi.org/10.1016/j.memsci.2007.08.050
  22. J.G. Verghese, A.A. Kittur, P.S. Rachipudi, M.Y. Kariduraganavar, J. Membr. Sci. 364 (2010) 111.
  23. J. Cho, J. Grant, M. Piquette-Miller, C. Allen, Biomacromolecules 7 (2006) 2845. https://doi.org/10.1021/bm060436s
  24. A.M. Sajjan, B.K. Jeevan Kumar, A.A. Kittur, M.Y. Kariduraganavar, J. Ind. Eng. Chem. 19 (2013) 427.
  25. A.M. Sajjan, B.K. Jeevan Kumar, A.A. Kittur, M.Y. Kariduraganavar, J. Membr. Sci. 425-426 (2013) 77. https://doi.org/10.1016/j.memsci.2012.08.042
  26. X. Wang, B. Liu, J. Ren, C. Liu, X. Wang, J. Wu, R. Sun, Composites Science and Technology 70 (2010) 1161. https://doi.org/10.1016/j.compscitech.2010.03.002
  27. R.J. Samuels, J. Polym. Sci.: Polym. Phys. Edition 19 (1981) 1081. https://doi.org/10.1002/pol.1981.180190706
  28. H.S. Tsai, Y.Z. Wang, Polym. Bull. 60 (2008) 103. https://doi.org/10.1007/s00289-007-0846-x
  29. D.S. Kim, M.D. Guiver, S.Y. Nam, T.I. Yun, M.Y. Seo, S.J. Kim, H.S. Hwang, J.W. Rhim, J. Membr. Sci. 281 (2006) 156. https://doi.org/10.1016/j.memsci.2006.03.025
  30. Y. Xiong, Q.L. Liu, Q.G. Zhang, A.M. Zhu, J. Power Sour. 183 (2008) 447. https://doi.org/10.1016/j.jpowsour.2008.06.004
  31. S. Farris, L. Introzzi, P. Biagioni, T. Holz, A. Schiraldi, L. Piergiovanni, Langmuir 27 (2011) 7563. https://doi.org/10.1021/la2017006
  32. S.K. Choudhari, M.Y. Kariduraganavar, J. Colloid Interface Sci. 338 (2009) 111. https://doi.org/10.1016/j.jcis.2009.05.071
  33. Q.G. Zhang, Q.L. Liu, A.M. Zhu, Y. Xiong, L. Ren, J. Membr. Sci. 335 (2009) 68. https://doi.org/10.1016/j.memsci.2009.02.039
  34. L.M. Vane, V.V. Namboodiri, R.G. Meier, J. Membr. Sci. 364 (2010) 102. https://doi.org/10.1016/j.memsci.2010.08.006
  35. S.S. Kulkarni, S.M. Tambe, A.A. Kittur, M.Y. Kariduraganavar, J. Appl. Polym. Sci. 99 (2006) 1380. https://doi.org/10.1002/app.22514
  36. R.S. Veerapur, K.B. Gudasi, T.M. Aminabhavi, J. Membr. Sci. 304 (2007) 102. https://doi.org/10.1016/j.memsci.2007.07.006
  37. M. Ghazali, M. Nawawi, R.Y.M. Huang, J. Membr. Sci. 124 (1997) 53. https://doi.org/10.1016/S0376-7388(96)00216-5
  38. Y.L. Liu, C.H. Yu, K.R. Lee, J.Y. Lai, J. Membr. Sci. 287 (2007) 230. https://doi.org/10.1016/j.memsci.2006.10.040
  39. A.D. Devi, B. Smitha, S. Sridhar, T.M. Aminabhavi, J. Membr. Sci. 262 (2005) 91. https://doi.org/10.1016/j.memsci.2005.03.051
  40. J.N. Shen, L.G. Wu, J.H. Qiu, C.J. Gao, J. Appl. Polym. Sci. 103 (2007) 1959. https://doi.org/10.1002/app.24910
  41. K. Rao, M.C.S. Subha, M. Sairam, N.N. Mallikarjuna, T.M. Aminabhavi, J. Appl. Polym. Sci. 103 (2007) 918.
  42. X. Chen, W. Li, Z. Shao, W. Zhong, T. Yu, J. Appl. Polym. Sci. 23 (1999) 975.
  43. A.A. Kittur, S.S. Kulkarni, M.I. Aralaguppi, M.Y. Kariduraganavar, J. Membr. Sci. 247 (2005) 75. https://doi.org/10.1016/j.memsci.2004.09.010
  44. S.K. Choudhari, A.A. Kittur, S.S. Kulkarni, M.Y. Kariduraganavar, J. Membr. Sci. 302 (2007) 197. https://doi.org/10.1016/j.memsci.2007.06.045
  45. Y.M. Lee, D. Bourgeois, G. Belfort, J. Membr. Sci. 44 (1989) 161. https://doi.org/10.1016/S0376-7388(00)83350-5
  46. I. Cabasso, J. Jagu-Grodzinski, D. Vofsi, J. Appl. Polym. Sci. 18 (1974) 2137. https://doi.org/10.1002/app.1974.070180720
  47. S.T. Hwang, K. Kammermeyer, Membrane in Separation, Wiley-Interscience, New York, 1975.
  48. P.S. Rachipudi, A.A. Kittur, S.K. Choudhari, J.G. Verghese, M.Y. Kariduraganavar, Eur. Polym. J. 45 (2009) 3116. https://doi.org/10.1016/j.eurpolymj.2009.08.011
  49. A.M. Sajjan, M.Y. Kariduraganavar, J. Membr. Sci. 438 (2013) 8. https://doi.org/10.1016/j.memsci.2013.03.016
  50. R.Y.M. Huang, C.K. Yeon, J. Membr. Sci. 58 (1991) 33. https://doi.org/10.1016/S0376-7388(00)80635-3
  51. D.H. Weinkauf, D.R. Paul, W.J. Koros (Eds.), in: Barrier Polymers and Structures, ACS Symposium Series, vol. 423, Washington, DC, 1990, pp. 61.

Cited by

  1. Preparation and pervaporation performance of chitosan‐poly(methacrylic acid) polyelectrolyte complex membranes for dehydration of 1,4‐dioxane vol.56, pp.6, 2016, https://doi.org/10.1002/pen.24298
  2. Preparation and Characterization of Facilitated Transport Membranes Composed of Chitosan-Styrene and Chitosan-Acrylonitrile Copolymers Modified by Methylimidazolium Based Ionic Liquids for CO vol.6, pp.2, 2015, https://doi.org/10.3390/membranes6020031
  3. Synthesis and characterization of polyelectrolyte complex membranes for the pervaporation separation of water-isopropanol mixtures using sodium alginate and gelatin vol.75, pp.2, 2015, https://doi.org/10.1007/s00289-017-2062-7
  4. Ag-exchanged NaY zeolite introduced polyvinyl alcohol/polyacrylic acid mixed matrix membrane for pervaporation separation of water/isopropanol mixture vol.8, pp.37, 2015, https://doi.org/10.1039/c8ra03474e
  5. Pervaporation separation of water–isopropyl alcohol mixture by PVA/LiBr membrane vol.59, pp.suppl1, 2015, https://doi.org/10.1002/pen.24876
  6. Novel Composite Membranes Based on Chitosan Copolymers with Polyacrylonitrile and Polystyrene: Physicochemical Properties and Application for Pervaporation Dehydration of Tetrahydrofuran vol.9, pp.3, 2015, https://doi.org/10.3390/membranes9030038
  7. Synthesis of a novel polyester-ether copolymer and its derivatives as antistatic additives for thermoplastic films vol.81, pp.None, 2015, https://doi.org/10.1016/j.polymertesting.2019.106214
  8. Crosslinked Nanocomposite Sodium Alginate-Based Membranes with Titanium Dioxide for the Dehydration of Isopropanol by Pervaporation vol.25, pp.6, 2015, https://doi.org/10.3390/molecules25061298
  9. Fabrication and Physicochemical Study of B2SA-Grafted Poly(vinyl Alcohol)-Graphene Hybrid Membranes for Dehydration of Bioethanol by Pervaporation vol.11, pp.2, 2015, https://doi.org/10.3390/membranes11020110
  10. Development and Characterization of Biocompatible Membranes from Natural Chitosan and Gelatin for Pervaporative Separation of Water-Isopropanol Mixture vol.13, pp.17, 2021, https://doi.org/10.3390/polym13172868