DOI QR코드

DOI QR Code

The electrochemical enzymatic glucose biosensor based on mesoporous carbon fibers activated by potassium carbonate

  • Kim, Ji-Hyun (Department of Applied Chemistry and Biological Engineering, Chungnam National University) ;
  • Lee, Dayoung (Department of Applied Chemistry and Biological Engineering, Chungnam National University) ;
  • Bae, Tae-Sung (Korea Basic Science Institute (KBSI) Jeonju Center) ;
  • Lee, Young-Seak (Department of Applied Chemistry and Biological Engineering, Chungnam National University)
  • Received : 2014.07.24
  • Accepted : 2014.10.20
  • Published : 2015.05.25

Abstract

Glucose-sensing electrodes have fabricated using mesoporous electro-spun carbon fibers, which have mesopores mainly and more oxygen functional groups on the surface, activated by potassium carbonate ($K_2CO_3$) with different concentrations. These porosity and the functional groups on the carbon fibers affected the immobilization of glucose oxidase on the electrode. The sensitivity of the electrode is determined based on enzymatic activity increasing glucose concentrations and calculated by enzyme kinetics using the Michaelis-Menten equation. The electrode prepared from carbon fibers activated with $4M\;K_2CO_3$, which has the highest mesopore volume and specific surface area, has the sensitivity $3.4{\mu}A\;mM^{-1}\;cm^{-2}$ and the broad linear range of up to 20 mM.

Keywords

Acknowledgement

Supported by : Korea Basic Science Institute (KBSI)

References

  1. V. Scognamiglio, Biosens. Bioelectron. 47 (2013) 12. https://doi.org/10.1016/j.bios.2013.02.043
  2. D. Zheng, S.K. Vashist, K.A. Rubeaan, J.H.T. Luong, F.S. Sheu, Analyst 137 (2012) 3800. https://doi.org/10.1039/c2an35128e
  3. P.D. Luca, M. Lepore, M. Portaccio, R. Esposito, S. Rossi, U. Bencivenga, D.G. Mita, Sensors 7 (2007) 2612. https://doi.org/10.3390/s7112612
  4. L. Ge, Y.S. Zhao, T. Mo, J.R. Li, P. Li, Food Control 26 (2012) 188. https://doi.org/10.1016/j.foodcont.2012.01.022
  5. H.S. Moon, I.S. Kim, S.J. Kang, S.K. Ryu, Carbon Lett. 15 (2014) 203. https://doi.org/10.5714/CL.2014.15.3.203
  6. D. Lee, J.Y. Jung, M.S. Park, Y.S. Lee, Carbon Lett. 15 (2014) 192. https://doi.org/10.5714/CL.2014.15.3.192
  7. J. Huang, Y. Liu, T. You, Anal. Methods 2 (2010) 202. https://doi.org/10.1039/b9ay00312f
  8. J.G. Kim, J.S. Im, T.S. Bae, J.H. Kim, Y.S. Lee, J. Ind. Eng. Chem. 19 (2013) 94.
  9. T.S. Bae, E. Shin, J.S. Im, J.G. Kim, Y.S. Lee, J. Non-Cryst. Solids 358 (2012) 544. https://doi.org/10.1016/j.jnoncrysol.2011.11.002
  10. K. Ariga, Q. Ji, T. Mori, M. Naito, Y. Yamauchi, H. Abe, J.P. Hill, Chem. Soc. Rev. 42 (2013) 6322. https://doi.org/10.1039/c2cs35475f
  11. M. Calvaresi, F. Zerbetto, Acc. Chem. Res. 46 (2013) 2454. https://doi.org/10.1021/ar300347d
  12. K. Ariga, A. Vinu, Y. Yamauchi, Q. Ji, J.P. Hill, Bull. Chem. Soc. Jpn. 85 (2012) 1. https://doi.org/10.1246/bcsj.20110162
  13. Y. Chen, H.R. Chen, J.L. Shi, Chem. Res. 47 (2014) 125. https://doi.org/10.1021/ar400091e
  14. J. Yu, T. Zhao, B. Zeng, Electrochem. Commun. 10 (2008) 1318. https://doi.org/10.1016/j.elecom.2008.06.028
  15. J. Hayashi, T. Horikawa, K. Muroyama, V.G. Gomes, Microporous Mesoporous Mater. 55 (2002) 63. https://doi.org/10.1016/S1387-1811(02)00406-7
  16. X.J. JIN., Z.M. Yu, Y. Wu, Cell. Chem. Technol. 46 (2012) 79.
  17. H. Yu, P. Li, J. Roberston, Diamond Relat. Mater. 20 (2011) 1020. https://doi.org/10.1016/j.diamond.2011.06.005
  18. X. Jiang, Y. Wu, X. Mao, X. Cui, L. Zhu, Sens. Actuators, B: Chem. 153 (2011) 158. https://doi.org/10.1016/j.snb.2010.10.023
  19. R. Nenkova, D. Ivanova, J. Vladimirova, T. Godfevargova, Sens. Actuators, B: Chem. 148 (2010) 59. https://doi.org/10.1016/j.snb.2010.05.034
  20. K.Y. Foo, B.H. Hameed, Bioresour. Technol. 111 (2012) 425. https://doi.org/10.1016/j.biortech.2012.01.141
  21. U. Iriarte-Velasco, J.L. Ayastuy, L. Zudaire, I. Sierra, Chem. Eng. J. 251 (2014) 217. https://doi.org/10.1016/j.cej.2014.04.048
  22. M. Galhetas, A.S. Mestre, M.L. Pinto, I. Gulyurtlu, H. Lopes, A.P. Carvalho, J. Colloid Interface Sci. 433 (2014) 94. https://doi.org/10.1016/j.jcis.2014.06.043
  23. J. Hayashi, T. Horikawa, I. Takeda, K. Muroyama, F.N. Ani, Carbon 40 (2002) 2381. https://doi.org/10.1016/S0008-6223(02)00118-5
  24. M. Zhang, X. Jin, Q. Zhao, New Carbon Mater. 29 (2014) 89. https://doi.org/10.1016/S1872-5805(14)60128-1
  25. E. Raymundo-Pinero, P. Azais, T. Cacciaguerra, D. Cazorla-Amoros, A. Linares-Solano, F. Beguin, Carbon 43 (2005) 786. https://doi.org/10.1016/j.carbon.2004.11.005
  26. X.J. Jin, Z.M. Yu, Y. Wu, Cellulose Chem. Technol. 46 (2012) 79.
  27. P.P. Jashi, S.A. Merchant, Y. Wang, D.W. Schmidtke, Anal. Chem. 77 (2005) 3183. https://doi.org/10.1021/ac0484169
  28. A. Salimi, A. Noorbakhsh, M. Ghadermarzi, Sens. Actuators, B: Chem. 123 (2007) 530. https://doi.org/10.1016/j.snb.2006.09.054
  29. J.H. Kim, S. Cho, T.S. Bae, Y.S. Lee, Sens. Actuators, B: Chem. 197 (2014) 20. https://doi.org/10.1016/j.snb.2014.02.054
  30. L. Cheng, S. Dong, J. Electrochem. Soc. 147 (2000) 606. https://doi.org/10.1149/1.1393241
  31. T. Kong, Y. Chen, Y. Ye, K. Zhang, Z. Wang, X. Wang, Sens. Actuators, B: Chem. 138 (2009) 344. https://doi.org/10.1016/j.snb.2009.01.002
  32. Y. Liu, X. Zhang, H. Liu, T. Yu, J. Deng, J. Biotechnol. 46 (1996) 131. https://doi.org/10.1016/0168-1656(95)00182-4
  33. C.G. Jesus, D. Lima, V. Santos, K. Wohnrath, C.A. Pessoa, Sens. Actuators, B: Chem. 186 (2013) 44. https://doi.org/10.1016/j.snb.2013.05.063
  34. M. Yang, Y. Yang, B. Liu, G. Shen, R. Yu, Sens. Actuators, B: Chem. 101 (2004) 269. https://doi.org/10.1016/j.snb.2004.01.003
  35. L. Wang, J. Bai, X. Bo, X. Zhang, L. Guo, Talanta 83 (2011) 1386. https://doi.org/10.1016/j.talanta.2010.11.022
  36. Y. Liu, M.K. Wang, F. Zhao, Z.A. Xu, S.J. Dong, Biosens. Bioelectron. 21 (2005) 984. https://doi.org/10.1016/j.bios.2005.03.003
  37. R. Lei, X. Wang, S. Zhu, N. Li, Sens. Actuators, B: Chem. 158 (2011) 124. https://doi.org/10.1016/j.snb.2011.05.054
  38. K.Y. Hwa, B. Subramani, Biosens. Bioelectron. 62 (2014) 127. https://doi.org/10.1016/j.bios.2014.06.023
  39. A.P. Aeriasamy, Y.J. Chang, S.M. Chen, Bioelectrochemisrty 80 (2011) 114. https://doi.org/10.1016/j.bioelechem.2010.06.009
  40. Y.C. Tsai, S.C. Li, J.M. Chen, Langmuir 21 (2005) 3653. https://doi.org/10.1021/la0470535
  41. X. Wu, F. Zhao, J.R. Varcoe, A.E. Thumser, C. Avignone-Rossa, R.C. Slade, Bioelectrochemistry 77 (2009) 64. https://doi.org/10.1016/j.bioelechem.2009.05.008
  42. B. Sjukic, C.E. Banks, C. Salter, A. Crossley, R.G. Compton, Analyst 131 (2006) 670. https://doi.org/10.1039/B601299J
  43. I. Carpani, E. Scavetta, D. Tonelli, Electroanalysis 20 (2008) 84. https://doi.org/10.1002/elan.200704054

Cited by

  1. 열처리 온도에 의한 피치계 활성탄소섬유의 기공구조 변화가 전기화학적 특성에 미치는 영향 vol.26, pp.5, 2015, https://doi.org/10.14478/ace.2015.1085
  2. Can carbon fibres work as tool electrodes in micro electrical discharge machining? vol.26, pp.7, 2015, https://doi.org/10.1088/0960-1317/26/7/075007
  3. Non-enzymatic detection of glucose in fruits using TiO2–Mn3O4 hybrid nano interface vol.7, pp.6, 2017, https://doi.org/10.1007/s13204-017-0571-1
  4. Recent Trends on Electrochemical Sensors Based on Ordered Mesoporous Carbon vol.17, pp.8, 2015, https://doi.org/10.3390/s17081863
  5. Preparation and Characterization of Shiitake Mushroom-Based Activated Carbon with High Adsorption Capacity vol.44, pp.6, 2015, https://doi.org/10.1007/s13369-019-03746-5
  6. Application of the Enzymatic Electrochemical Biosensors for Monitoring Non-Competitive Inhibition of Enzyme Activity by Heavy Metals vol.19, pp.13, 2015, https://doi.org/10.3390/s19132939
  7. An electronic enzyme-linked immunosorbent assay platform for protein analysis based on magnetic beads and AlGaN/GaN high electron mobility transistors vol.145, pp.7, 2015, https://doi.org/10.1039/c9an01809c
  8. Status Update on Bioelectrochemical Systems: Prospects for Carbon Electrode Design and Scale-Up vol.11, pp.2, 2015, https://doi.org/10.3390/catal11020278