DOI QR코드

DOI QR Code

Equilibrium, kinetic, thermodynamic and desorption studies of cadmium and lead by polyaniline grafted cross-linked chitosan beads from aqueous solution

  • Igberase, E. (Department of Chemical Engineering, Vaal University of Technology) ;
  • Osifo, P. (Department of Chemical Engineering, Vaal University of Technology)
  • Received : 2014.06.20
  • Accepted : 2014.12.10
  • Published : 2015.06.25

Abstract

Modification of chitosan beads by cross-linking and grafting was investigated in this work, in order to use the grafted beads in the removal of cadmium and lead from contaminated water. The beads were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM) to provide evidence of successful cross-linking and grafting. Batch experiments were carried out as a function of adsorption parameters such as pH, initial concentration, contact time and adsorbent dosage. Equilibrium data were obtained from the adsorption experiment performed, the data were correlated with the Langmuir and Freundlich isotherm models. The maximum adsorption capacity for cadmium and lead ions at a temperature of $45^{\circ}C$ from Langmuir model was found to be 145 mg/g and 114 mg/g respectively. Subsequently, thermodynamic parameters such as Gibb's free energy change (${\Delta}G^o$), enthalpy change (${\Delta}H^o$) and entropy change (${\Delta}S^o$) were calculated and the results showed that the adsorption of cadmium and lead ions onto polyaniline grafted cross-linked chitosan beads (GXCS) is spontaneous and endothermic in nature. The pseudo-first-order and pseudo-second-order model were used in analyzing kinetic data for both metal ions. The data fit well with the pseudo-second-order model. Desorption of GXCS loaded with cadmium and lead ions was assessed for five consecutive adsorption/desorption cycle. However, among the eluents that was investigated 0.5 M HCl was successfully used in desorbing the spent adsorbent and a percentage desorption of 98.94% and 97.50% was obtained for cadmium and lead ions respectively, at a desorption time of 3 h.

Keywords

References

  1. N.D. Tumin, A.C. Zawani, S.A. Rashid, J. Eng. Sci. Technol. 3 (2008) 180-189.
  2. M.M. Rao, A. Ramesh, G.P.C. Rao, J. Hazard. Mater. 129 (2006) 123-129. https://doi.org/10.1016/j.jhazmat.2005.08.018
  3. D. Liu, S. Dezhi, L. Yangqing, J. Sep. Sci. Technol. 46 (2011) 321-329.
  4. G. Gyananath, D.K. Balhal, Cellul. Chem. Technol. 46 (2012) 121-124.
  5. N. Li, R. Bai, J. Appl. Polym. Sci. 42 (2005) 237-245.
  6. A. Bhatnagar, A.K. Minocha, Indian J. Chem. Eng. 13 (2006) 203-217.
  7. B. Salunkhe, S.J. Raut, Int. J. Chem. Sci. 10 (2012) 1133-1148.
  8. I. Ali, M. Asim, T.A. Khan, J. Environ. Manag. 113 (2012) 170-183. https://doi.org/10.1016/j.jenvman.2012.08.028
  9. D.W. Jenkins, S.M. Hudson, Chem. Rev. 101 (2002) 3245-3273.
  10. E. Igberase, P. Osifo, A. Ofomaja, J. Environ. Chem. Eng. 2 (2014) 362-369. https://doi.org/10.1016/j.jece.2014.01.008
  11. R.A.A. Muzzarelli, Natural Chelating Polymers, Pergamon Press, New York, Oxford, 1997.
  12. P.O. Osifo, W.J.P.H. Neomagus, R.C. Everson, A. Webter, M.A.V. Gun, J. Hazard. Mater. 167 (2009) 1242-1245. https://doi.org/10.1016/j.jhazmat.2009.01.109
  13. L.V. Pengju, B. Yuezhen, L. Yongqiang, R. Chen, W. Xuan, B. Zhao, J. Polym. Sci. 50 (2009) 5675-5680.
  14. A.E. Ofomaja, Y.-S. Ho, Bioresour. Technol. 99 (2008) 5411-5417. https://doi.org/10.1016/j.biortech.2007.11.018
  15. S. Hena, J. Hazard. Mater. 181 (2010) 474-479. https://doi.org/10.1016/j.jhazmat.2010.05.037
  16. M. Chiban, G. Carja, G. Lehutu, F. Sinan, Arab. J. Chem. 33 (2012) 12-20.
  17. Y.S. Ho, A. Ofomaja, Process Biochem. 40 (2005) 3455-3461. https://doi.org/10.1016/j.procbio.2005.02.017
  18. S. Lagergren, Zur theorie der sogenannten adsorption geloster stoffe, Kungliga Svenska Vetenskapsakademiens, Handlingar 24, 1898, 1-39.
  19. Y.S. Ho, G. Mckay, Water Resour. 33 (1999) 115-124.
  20. G. Crini, Progr. Polym. Sci. 30 (2005) 38-70. https://doi.org/10.1016/j.progpolymsci.2004.11.002
  21. B. Volesky, Hydrometallurgy 59 (2001) 203-216. https://doi.org/10.1016/S0304-386X(00)00160-2
  22. L. Bulgariu, C. Balan, D. Bulgariu, D. Macoveanu, Desalination Water Treat. 1 (2013) 1-9.
  23. D. Ozer, A. Ozer, M. Ozer, Process Biochem. 39 (2004) 2183-2191. https://doi.org/10.1016/j.procbio.2003.11.008
  24. A.K. Meena, G.K. Mishra, P.K. Rai, C. Rajagopal, P.N. Nagar, J. Hazard. Mater. 122 (2005) 161-170. https://doi.org/10.1016/j.jhazmat.2005.03.024
  25. M.A. Barakat, Res. J. Environ. Sci. 2 (2008) 13-22. https://doi.org/10.3923/rjes.2008.13.22
  26. S. Babel, T.A. Kurniawan, Ion Exchange 14 (2003) 289-292. https://doi.org/10.5182/jaie.14.Supplement_289
  27. M.M. Fares, B. Al-Taani, Acta Chim. Slovenica 50 (2003) 275-285.
  28. G.A. Sewvandi, S.U. Adikary, Soc. Soc. Manag. Syst. Int. J. 66 (2011) 12-60.
  29. K. Jolanta, C. Malgorzata, K. Zbigniew, B. Anna, B. Krysztof, T. Jorg, S. Piotr, Mar. Drugs 8 (2010) 1570-1577.
  30. Y. Sag, Y. Aytay, J. Biochem. Eng. 12 (2002) 143-153. https://doi.org/10.1016/S1369-703X(02)00068-2

Cited by

  1. Improved Method for Preparation of Amidoxime Modified Poly(acrylonitrile-co-acrylic acid): Characterizations and Adsorption Case Study vol.7, pp.7, 2015, https://doi.org/10.3390/polym7071205
  2. Leonardite-derived humic substances are great adsorbents for cadmium vol.24, pp.29, 2015, https://doi.org/10.1007/s11356-017-9947-8
  3. The Adsorption of Pb, Zn, Cu, Ni, and Cd by Modified Ligand in a Single Component Aqueous Solution: Equilibrium, Kinetic, Thermodynamic, and Desorption Studies vol.2017, pp.None, 2017, https://doi.org/10.1155/2017/6150209
  4. Application of chitosan/poly(vinyl alcohol)/CuO (CS/PVA/CuO) beads as an adsorbent material for the removal of Pb(II) from aqueous environment vol.149, pp.None, 2015, https://doi.org/10.1016/j.colsurfb.2016.10.024
  5. Continuous biosorption of nickel from aqueous solution using Chrysanthemum indicum derived biochar in a fixed-bed column vol.76, pp.7, 2015, https://doi.org/10.2166/wst.2017.289
  6. Heavy metal removal from wastewater using various adsorbents: a review vol.7, pp.4, 2017, https://doi.org/10.2166/wrd.2016.104
  7. Mathematical modelling of Pb2+, Cu2+, Ni2+, Zn2+, Cr6+ and Cd2+ ions adsorption from a synthetic acid mine drainage onto chitosan deri vol.39, pp.24, 2015, https://doi.org/10.1080/09593330.2017.1375027
  8. Sorption of Hg(II) and Pb(II) Ions on Chitosan-Iron(III) from Aqueous Solutions: Single and Binary Systems vol.10, pp.4, 2015, https://doi.org/10.3390/polym10040367
  9. Removal of heavy metals by chitin: equilibrium, kinetic and thermodynamic studies vol.9, pp.2, 2015, https://doi.org/10.1007/s13201-019-0926-8
  10. La eliminación de metales tóxicos presentes en efluentes líquidos mediante resinas de cambio iónico. Parte IX: Plomo(II))/H+/Amberlite IR-120 vol.55, pp.1, 2019, https://doi.org/10.3989/revmetalm.138
  11. Removal of Pb (II) from aqueous solution by sulfur-functionalized walnut shell vol.26, pp.13, 2015, https://doi.org/10.1007/s11356-019-04753-7
  12. Chitosan cross-linked with κ-carrageenan to remove cadmium from water and soil systems vol.26, pp.25, 2015, https://doi.org/10.1007/s11356-019-05488-1
  13. Nano-sized Prussian blue immobilized costless agro-industrial waste for the removal of cesium-137 ions vol.26, pp.25, 2015, https://doi.org/10.1007/s11356-019-05851-2
  14. Chitosan and cyanoguanidine-crosslinked chitosan coated glass beads and its application in fixed bed adsorption vol.206, pp.11, 2015, https://doi.org/10.1080/00986445.2019.1581618
  15. Synthesis and characterization of a novel chitosan-grafted-polyorthoethylaniline biocomposite and utilization for dye removal from water vol.18, pp.1, 2020, https://doi.org/10.1515/chem-2020-0137
  16. Synthesis and characterization of a novel chitosan-grafted-polyorthoethylaniline biocomposite and utilization for dye removal from water vol.18, pp.1, 2020, https://doi.org/10.1515/chem-2020-0137
  17. A review of advances in the preparation and application of polyaniline based thermoset blends and composites vol.27, pp.5, 2020, https://doi.org/10.1007/s10965-020-02052-1
  18. Overview of polymer-TiO2 catalyst for aqueous degradation of pharmaceuticals in heterogeneous photocatalytic process vol.22, pp.6, 2015, https://doi.org/10.1007/s11051-020-04877-9
  19. Dependence of Water-Permeable Chitosan Membranes on Chitosan Molecular Weight and Alkali Treatment vol.10, pp.11, 2015, https://doi.org/10.3390/membranes10110351
  20. Recent advances in heavy metal removal by chitosan based adsorbents vol.251, pp.None, 2015, https://doi.org/10.1016/j.carbpol.2020.117000
  21. Polyamidoamine-Functionalized Graphene Oxide-SBA-15 Mesoporous Composite: Adsorbent for Aqueous Arsenite, Cadmium, Ciprofloxacin, Ivermectin, and Tetracycline vol.60, pp.10, 2015, https://doi.org/10.1021/acs.iecr.0c04902
  22. Effect of the reduction–mineralization synergistic mechanism of Bacillus on the remediation of hexavalent chromium vol.777, pp.None, 2015, https://doi.org/10.1016/j.scitotenv.2021.146190
  23. Heavy Metals Removal from Water by Efficient Adsorbents vol.13, pp.19, 2021, https://doi.org/10.3390/w13192659
  24. Environmentally friendly alternative for heavy metal adsorption based on doped diatoms with Au nanoparticles: A novel approach in green synthesis of adsorbents and kinetic adsorption study vol.46, pp.None, 2015, https://doi.org/10.1016/j.colcom.2021.100559