DOI QR코드

DOI QR Code

Chitosan coated magnetic nanoparticles as nano-adsorbent for efficient removal of mercury contents from industrial aqueous and oily samples

  • Nasirimoghaddam, S. (Department of Nanochemical Engineering, School of Advanced Technologies, Shiraz University) ;
  • Zeinali, S. (Department of Nanochemical Engineering, School of Advanced Technologies, Shiraz University) ;
  • Sabbaghi, S. (Department of Nanochemical Engineering, School of Advanced Technologies, Shiraz University)
  • Received : 2014.01.13
  • Accepted : 2014.12.09
  • Published : 2015.07.25

Abstract

Chitosan coated magnetic nanoparticles have been synthesized and developed as highly efficient nano-adsorbent for the removal of $Hg^{2+}$ ions from industrial aqueous and oily samples. TEM, DLS, UV-vis, FTIR spectroscopy, VSM and zeta-potential techniques were applied for characterization of nanoparticles. The results confirmed formation of narrow dispersed nanoparticles with mean diameter about 10 nm. The effects of experimental conditions such as, pH, temperature, nano-adsorbent dosage and the concentration of chitosan on the removal ability were investigated. In order to regenerate of adsorbent, some eluents were used for desorption of mercury ions and the best results were achieved using EDTA and $H_2SO_4$.

Keywords

References

  1. P. Xu, G.M. Zeng, D.L. Huang, Ch.L. Feng, Sh. Hu, M.H. Zhao, C. Lai, Zh. Wei, Ch. o Huang, G.X. Xie, Zh.F. Liu, Sci. Total Environ. 424 (2012) 1. https://doi.org/10.1016/j.scitotenv.2012.02.023
  2. L. Zhou, Y. Wang, Zh. Liu, Q. Huang, J. Hazard. Mater. 161 (2009) 995. https://doi.org/10.1016/j.jhazmat.2008.04.078
  3. Ch. Wang, Sh. Tao, W. Wei, Ch. Meng, F. Liua, M. Han, J. Mater. Chem. 20 (2010) 4635. https://doi.org/10.1039/c000315h
  4. H. Parham, B. Zargar, R. Shiralipour, J. Hazard. Mater. 205-206 (2012) 94. https://doi.org/10.1016/j.jhazmat.2011.12.026
  5. R. Say, E. Birlik, Z. Erdemgil, A. Denizli, A. Ersoz, J. Hazard. Mater. 150 (2008) 560. https://doi.org/10.1016/j.jhazmat.2007.03.089
  6. T.Y. Yan, Ind. Eng. Chem. Res. 35 (1996) 3697. https://doi.org/10.1021/ie950630n
  7. T.Y. Yan, Chem. Eng. Commun. 177 (2000) 15. https://doi.org/10.1080/00986440008912158
  8. S.M. Wilhelm, Mercury in Petroleum and Natural Gas: Estimation of Emissions from Production, Processing and Combustion, US EPA, September, 2001.
  9. S.M. Wilhelm, Fuel Process. Technol. 63 (2000) 1. https://doi.org/10.1016/S0378-3820(99)00068-5
  10. L. Zhou, J. Xu, X. Liang, Zh. Liu, J. Hazard. Mater. 182 (2010) 518. https://doi.org/10.1016/j.jhazmat.2010.06.062
  11. M. Velicu, H. Fu, R.P.S. Suri, K. Woods, J. Hazard. Mater. 148 (2007) 599. https://doi.org/10.1016/j.jhazmat.2007.03.015
  12. G. Cheng, M. He, H. Peng, B. Hu, Talanta 88 (2012) 507. https://doi.org/10.1016/j.talanta.2011.11.025
  13. H. Jianga, Zh. Yan, Y. Zhao, X. Hu, H. Lian, Talanta 94 (2012) 251. https://doi.org/10.1016/j.talanta.2012.03.035
  14. P. Panneerselvam, N. Morad, K.A. Tan, J. Hazard. Mater. 186 (2011) 160. https://doi.org/10.1016/j.jhazmat.2010.10.102
  15. H. Yong-Meia, Ch. Man, H. Zhong-Bo, J. Hazard. Mater. 184 (2010) 392. https://doi.org/10.1016/j.jhazmat.2010.08.048
  16. X. Liu, Q. Hu, Zh. Fang, X. Zhang, B. Zhang, Langmuir 25 (2009) 3. https://doi.org/10.1021/la802754t
  17. H. Bagheri, A. Afkhami, M. Saber-Tehrani, H. Khoshsafar, Talanta 97 (2012) 87. https://doi.org/10.1016/j.talanta.2012.03.066
  18. L. Zhang, X. Zhu, H. Sun, G. Chi, J. Xu, Y. Su, Curr. Appl. Phys. 10 (2010) 828. https://doi.org/10.1016/j.cap.2009.10.002
  19. S.S. Banerjee, D.H. Chen, J. Hazard. Mater. 147 (2007) 792. https://doi.org/10.1016/j.jhazmat.2007.01.079
  20. E.I. El-Shafey, J. Hazard. Mater. 175 (2010) 319. https://doi.org/10.1016/j.jhazmat.2009.10.006
  21. B. Dou, V. Dupont, W. Pan, B. Chen, Chem. Eng. J. 166 (2011) 631. https://doi.org/10.1016/j.cej.2010.11.035
  22. P.I. Girginova, A.L. Daniel-da-Silva, C.B. Lopes, P. Figueira, M. Otero, V.S. Amaral, E. Pereira, T. Trindade, J. Colloid Interf. Sci. 345 (2010) 234. https://doi.org/10.1016/j.jcis.2010.01.087
  23. Y. Zhang, Q. Li, L. Sun, R. Tang, J. Zhai, J. Hazard. Mater. 175 (2010) 404. https://doi.org/10.1016/j.jhazmat.2009.10.019
  24. A. Bhattacharyya, S. Dutta, P. De, P. Ray, S. Basu, Bioresour. Technol. 101 (2010) 9421. https://doi.org/10.1016/j.biortech.2010.06.126
  25. Y. Takagai, A. Shibata, S. Kiyokawa, T. Takase, J. Colloid Interface Sci. 353 (2011) 593. https://doi.org/10.1016/j.jcis.2010.09.070
  26. S. Dutta, A. Bhattacharyya, P. De, P. Ray, S. Basu, J. Hazard. Mater. 172 (2009) 888. https://doi.org/10.1016/j.jhazmat.2009.07.085
  27. S.S.M. Hassan, N.S. Awwad, A.H.A. Aboterika, J. Hazard. Mater. 154 (2008) 992. https://doi.org/10.1016/j.jhazmat.2007.11.003
  28. H.E. Byrne, D.W. Mazyck, J. Hazard. Mater. 170 (2009) 915. https://doi.org/10.1016/j.jhazmat.2009.05.055
  29. B. Dou, H. Chen, Desalination 269 (2011) 260. https://doi.org/10.1016/j.desal.2010.11.009
  30. M. Jamshidi Shadbad, A. Mohebbi, A. Soltani, Korean J. Chem. Eng. 28 (2011) 1029. https://doi.org/10.1007/s11814-010-0463-5
  31. M. Park, S. Seo, I.S. Lee, J.H. Jung, Chem. Commun. 46 (2010) 4478. https://doi.org/10.1039/c002905j
  32. P.I. Girginova, A.L. Daniel-da-Silva, C.B. Lopes, P. Figueira, M. Otero, V.S. Amaral, E. Pereira, T. Trindade, J. Colloid Interface Sci. 345 (2010) 234. https://doi.org/10.1016/j.jcis.2010.01.087
  33. J. Liu, Z. Zhao, G. Jiang, Environ. Sci. Technol. 42 (2008) 6949. https://doi.org/10.1021/es800924c
  34. S. Yang, Y. Guo, N. Yan, Z. Qu, J. Xie, C. Yang, J. Jia, J. Hazard. Mater. 186 (2011) 508. https://doi.org/10.1016/j.jhazmat.2010.11.034
  35. B.Y. Song, Y. Eom, T.G. Lee, Appl. Surf. Sci. 257 (2011) 4754. https://doi.org/10.1016/j.apsusc.2010.12.156
  36. W.S. Wan Ngah, L.C. Teong, M.A.K.M. Hanafiah, Carbohydr. Polym. 83 (2011) 1446. https://doi.org/10.1016/j.carbpol.2010.11.004
  37. Y.C. Chang, D.H. Chen, J. Colloid Interface Sci. 283 (2005) 446. https://doi.org/10.1016/j.jcis.2004.09.010
  38. H. Honda, A. Kawabe, M. Shinkai, T. Kobayashi, J. Ferment. Bioeng. 86 (1998) 191. https://doi.org/10.1016/S0922-338X(98)80060-3
  39. Y. Wu, Y. Wang, G. Luo, Y. Dai, Bioresour. Technol. 100 (2009) 3459. https://doi.org/10.1016/j.biortech.2009.02.018
  40. S. Mohapatra, D. Pal, S.K. Ghosh, P. P. Pramanik, J. Nanosci. Nanotechnol. 7 (2007) 3193. https://doi.org/10.1166/jnn.2007.869
  41. G. Sun, X. Chen, Y. Li, B. Zheng, Z. Gong, J. Sun, H. Chen, J. Li, W. Lin, Front. Mater. Sci. China. 2 (2008) 105. https://doi.org/10.1007/s11706-008-0019-3
  42. Y. Ren, X. Wei, M. Zhang, J. Hazard. Mater. 158 (2008) 14. https://doi.org/10.1016/j.jhazmat.2008.01.044
  43. G.L. Huang, H.Y. Zhang, J.X. Shi, T.A.G. Langrish, Ind. Eng. Chem. Res. 48 (2009) 2646. https://doi.org/10.1021/ie800814h
  44. Z.Y. Ma, Y.P. Guan, H.Z. Liu, J. Polym. Sci. A. Polym. Chem. 43 (2005) 3433. https://doi.org/10.1002/pola.20803
  45. S. Senel, J. Susan, McClure, Adv. Drug Deliv. Rev. 56 (2004) 1467. https://doi.org/10.1016/j.addr.2004.02.007
  46. K. Oshita, M. Oshima, Y. Gao, K. Lee, S. Motomizu, Anal. Sci. 18 (2002) 1121. https://doi.org/10.2116/analsci.18.1121
  47. I. Langmuir, J. Am. Chem. Soc. 38 (1916) 2221. https://doi.org/10.1021/ja02268a002
  48. Z.Y. Yao, J.H. Qi, L.H. Wang, J. Hazard. Mater. 174 (2010) 137. https://doi.org/10.1016/j.jhazmat.2009.09.027

Cited by

  1. Sorption of Pb(II) on carboxymethyl chitosan-conjugated magnetite nanoparticles: application of sorbent dosage-dependent isotherms vol.294, pp.8, 2015, https://doi.org/10.1007/s00396-016-3893-8
  2. Fibrous polymer-grafted chitosan/clay composite beads as a carrier for immobilization of papain and its usability for mercury elimination vol.39, pp.7, 2015, https://doi.org/10.1007/s00449-016-1590-0
  3. Controlled release of protein from magnetite–chitosan nanoparticles exposed to an alternating magnetic field vol.133, pp.17, 2015, https://doi.org/10.1002/app.43335
  4. Adsorption of Amino Acids, Aspartic Acid, and Lysine onto Iron-Oxide Nanoparticles vol.120, pp.26, 2015, https://doi.org/10.1021/acs.jpcc.6b03180
  5. Characterization of bare and modified nano-zirconium oxide (ZrO2) and their applications as adsorbents for the removal of bivalent heavy metals vol.34, pp.1, 2015, https://doi.org/10.1007/s11814-016-0259-3
  6. Adsorption of mercury(ii) with an Fe3O4 magnetic polypyrrole-graphene oxide nanocomposite vol.7, pp.30, 2015, https://doi.org/10.1039/c7ra01147d
  7. Magnetic nanoparticle modified chitosan for surface enhanced laser desorption/ionization mass spectrometry of surfactants vol.7, pp.66, 2015, https://doi.org/10.1039/c7ra05982e
  8. Surface Functionalization of Iron Oxide Nanoparticles with Gallic Acid as Potential Antioxidant and Antimicrobial Agents vol.7, pp.10, 2015, https://doi.org/10.3390/nano7100306
  9. Removal of Mercury in Liquid Hydrocarbons using Zeolites Modified with Chitosan and Magnetic Iron Oxide Nanoparticles vol.75, pp.None, 2015, https://doi.org/10.1088/1755-1315/75/1/012010
  10. Preparation, characterization and application of superparamagnetic iron oxide nanoparticles modified with natural polymers for removal of 60Co-radionuclides from aqueous solution vol.105, pp.2, 2017, https://doi.org/10.1515/ract-2016-2595
  11. Review on nanoadsorbents: a solution for heavy metal removal from wastewater vol.11, pp.3, 2015, https://doi.org/10.1049/iet-nbt.2015.0114
  12. Surface adsorption of poisonous Pb(II) ions from water using chitosan functionalised magnetic nanoparticles vol.11, pp.4, 2015, https://doi.org/10.1049/iet-nbt.2016.0166
  13. The enzyme-sensitive release of prodigiosin grafted β-cyclodextrin and chitosan magnetic nanoparticles as an anticancer drug delivery system: Synthesis, characterization and cytotoxicity studies vol.158, pp.None, 2015, https://doi.org/10.1016/j.colsurfb.2017.07.044
  14. Fabrication of magnetic nanoparticles coated with polyaniline for removal of 2, 4-dinitrophenol vol.1123, pp.None, 2015, https://doi.org/10.1088/1742-6596/1123/1/012015
  15. Recent Application of the Various Nanomaterials and Nanocatalysts for the Heavy Metals’ Removal from Wastewater vol.13, pp.9, 2015, https://doi.org/10.1142/s1793292018300062
  16. Magnetic-propelled Fe3O4-chitosan carriers enhanceL-asparaginase catalytic activity: a promising strategy for enzyme immobilization vol.8, pp.63, 2015, https://doi.org/10.1039/c8ra06346j
  17. Thin Film Composite Membrane for Oily Waste Water Treatment: Recent Advances and Challenges vol.8, pp.4, 2018, https://doi.org/10.3390/membranes8040086
  18. Mutual Effects of Fe3O4/Chitosan Nanocomposite and Different Ions in Water for Stability of Water-in-Oil (w/o) Emulsions at Low-High Salinities vol.32, pp.12, 2015, https://doi.org/10.1021/acs.energyfuels.8b02449
  19. Insights of CMNPs in water pollution control vol.13, pp.6, 2015, https://doi.org/10.1049/iet-nbt.2019.0030
  20. A novel material for the detection and removal of mercury(II) based on a 2,6-bis(2-thienyl)pyridine receptor vol.7, pp.33, 2015, https://doi.org/10.1039/c9tc03201k
  21. Synthesis of a chromium terephthalate metal organic framework and use as nanoporous adsorbent for removal of diazinon organophosphorus insecticide from aqueous media vol.40, pp.10, 2019, https://doi.org/10.1080/01932691.2018.1516149
  22. ZnFe2O4@SiO2@Tragacanth gum nanocomposite: synthesis and its application for the removal of methylene blue dye from aqueous solution vol.76, pp.12, 2015, https://doi.org/10.1007/s00289-019-02681-7
  23. Biocompatible superparamagnetic nanoparticles with ibuprofen as potential drug carriers vol.2, pp.3, 2015, https://doi.org/10.1007/s42452-020-2265-7
  24. Removal of mercury(II) from contaminated water by gold-functionalised Fe3O4 magnetic nanoparticles vol.41, pp.8, 2020, https://doi.org/10.1080/09593330.2018.1515989
  25. Microwave assisted synthesis of poly (N-vinylimidazole) grafted chitosan as an effective adsorbent for mercury (II) removal from aqueous solution: Equilibrium, kinetic, thermodynamics and regeneration vol.41, pp.6, 2020, https://doi.org/10.1080/01932691.2019.1614025
  26. Removal of toxic metals from water using chitosan-based magnetic adsorbents. A review vol.18, pp.4, 2015, https://doi.org/10.1007/s10311-020-01003-y
  27. Synthesis of hierarchical MgO based on a cotton template and its adsorption properties for efficient treatment of oilfield wastewater vol.10, pp.48, 2015, https://doi.org/10.1039/d0ra04181e
  28. Heavy metal removal from wastewater using nanomaterials-process and engineering aspects vol.150, pp.None, 2015, https://doi.org/10.1016/j.psep.2021.04.025
  29. Heavy metal pollution and the role of inorganic nanomaterials in environmental remediation vol.8, pp.10, 2015, https://doi.org/10.1098/rsos.201485
  30. In-situ generated carbon dot modified filter paper for heavy metals removal in water vol.16, pp.None, 2015, https://doi.org/10.1016/j.enmm.2021.100582
  31. Synthesis of novel thiol-modified lysozyme coated magnetic nanoparticles for the high selective adsorption of Hg(II) vol.170, pp.None, 2022, https://doi.org/10.1016/j.reactfunctpolym.2021.105129