DOI QR코드

DOI QR Code

Catalytic efficiency of sulfuric and hydrochloric acids for the hydrolysis of Gelidium latifolium (Gelidiales, Rhodophyta) in bioethanol production

  • Meinita, Maria Dyah Nur (Faculty of Fisheries and Marine Sciences, Jenderal Soedirman University) ;
  • Marhaeni, Bintang (Faculty of Fisheries and Marine Sciences, Jenderal Soedirman University) ;
  • Winanto, Tjahjo (Faculty of Fisheries and Marine Sciences, Jenderal Soedirman University) ;
  • Setyaningsih, Dwi (Surfactant and Bioenergy Research Center, Bogor Agricuktural University) ;
  • Hong, Yong-Ki (Department of Biotechnology, Pukyong National University)
  • Received : 2014.11.01
  • Accepted : 2014.12.22
  • Published : 2015.07.25

Abstract

Gelidium latifolium was selected as a potential resource for bioethanol production among 25 tropical red seaweed species candidates due to its high carbohydrate content. This report shows a catalytic efficiency comparison between sulfuric ($H_2SO_4$) and hydrochloric acid (HCl) as feasible catalysts, which are used for the hydrolysis of G. latifolium. $H_2SO_4$ showed better hydrolysis compared to HCl based on sugar production, catalytic efficiency, and ethanol production. These results are important for future applications of bioethanol production on an industrial scale.

Keywords

References

  1. M.D.N. Meinita, J.Y. Kang, G.T. Jeong, H.M. Koo, S.M. Park, Y.K. Hong, J. Appl. Phycol. 24 (2012) 857. https://doi.org/10.1007/s10811-011-9705-0
  2. Y. Khambaty, K. Mody, M.R. Gandhi, S. Thampy, P. Maiti, H. Brahmbhatt, K. Eswaran, P.K. Ghosh, Bioresour. Technol. 103 (2012) 180. https://doi.org/10.1016/j.biortech.2011.10.015
  3. D. McHugh, Fisheries Technical Paper, FAO, Rome, 2003.
  4. W.L. Zemke-White, M. Ohno, J. Appl. Phycol. 11 (1999) 369. https://doi.org/10.1023/A:1008197610793
  5. N. Qureshi, G.J. Manderson, Energy Sources 17 (1995) 241. https://doi.org/10.1080/00908319508946081
  6. K. Karimi, S. Kheradmandinia, M.J. Taherzadeh, Biomass Bioenergy 30 (2006) 247. https://doi.org/10.1016/j.biombioe.2005.11.015
  7. Q. Xiang, Y.Y. Lee, R.W. Torget, in: Proceedings of the Twenty-Fifth Symposium on Biotechnology for Fuels and Chemicals, 2004, p. 1127.
  8. J. Iranmahboob, F. Nadim, Biomass Bioenergy 22 (2002) 401. https://doi.org/10.1016/S0961-9534(02)00016-8
  9. A. Esteghlalian, A.G. Hashimoto, J.J. Fenske, M.H. Penner, Bioresour. Technol. 59 (1997) 129. https://doi.org/10.1016/S0960-8524(97)81606-9
  10. M.D.N. Meinita, G.T. Jeong, Y.K. Hong, Bioprocess. Biosyst. Eng. 35 (2012) 123. https://doi.org/10.1007/s00449-011-0609-9
  11. M.D.N. Meinita, G.T. Jeong, Y.K. Hong, Bioprocess. Biosyst. Eng. 35 (2012) 93. https://doi.org/10.1007/s00449-011-0608-x
  12. C.J. Dawes, Marine Botany, second ed., Wiley & Son, New York, NY, 1998.
  13. S.C. Prescott, C.G. Dun, Industrial Microbiology, McGraw-Hill, New York, NY, 1959.
  14. G. Kochert, in: J.A. Hellebust, J.S. Craigie (Eds.), Handbook of Phycological Methods, Vol II, Physiological and Biochemical Methods, Cambridge University Press, Cambridge, 1978.
  15. M.F. Chaplin, in: M.F. Chaplin, J.F. Kennedy (Eds.), Carbohydrate Analysis: A Practical Approach, IRC Press, Oxford, 1986.
  16. A. Herrera, S.J. Tellez-Luis, J.J. Gonzalez-Cabriales, J.A. Ramirez, M. Vazquez, J. Food Eng. 63 (2004) 103. https://doi.org/10.1016/S0260-8774(03)00288-7
  17. D.J. McHugh, Production and utilization of products from commercial seaweeds, in: Fisheries Technical Paper, FAO, Rome, 1987.
  18. E. Marinho-Soriano, E. Bourret, Bioresour. Technol. 90 (2003) 329. https://doi.org/10.1016/S0960-8524(03)00112-3
  19. C.N. Jol, T.G. Neiss, B. Penninkhof, B. Rudolph, G.A.D. Ruiter, Anal Biochem. 268 (1999) 213. https://doi.org/10.1006/abio.1998.3059
  20. E. Percival, Br. Phycol. J. 14 (1979) 103. https://doi.org/10.1080/00071617900650121
  21. R. Quemcncr, N.F. Lahaye, J. Appl. Phycol. 10 (1998) 5.
  22. M.D.N. Meinita, B. Marhaeni, T. Winanto, G.T. Jeong, M.N.A. Khan, Y.K. Hong, J. Appl. Phycol. (2013), http://dx.doi.org/10.1007/s10811-013-0041-4.
  23. S.J. Tellez-Luis, J.A. Ramirez, M.J. Vazquez, Sci. Food. Agric. 82 (2002) 505. https://doi.org/10.1002/jsfa.1072
  24. R. Aguilar, J.A. Ramirez, G. Garrote, M. Vazquez, J. Food Eng. 55 (2002) 309. https://doi.org/10.1016/S0260-8774(02)00106-1
  25. G. Bustos, J.A. Ramfrez, G. Garrote, M. Vazquez, Appl. Biochem. Biotechnol. 104 (2002) 51.
  26. G.T. Jeong, D.H. Park, Appl. Biochem. Biotechnol. 161 (2010) 41. https://doi.org/10.1007/s12010-009-8795-5

Cited by

  1. Bioconversion of Mushroom Cultivation Waste Materials into Cellulolytic Enzymes and Bioethanol vol.42, pp.6, 2017, https://doi.org/10.1007/s13369-017-2496-0
  2. Synergizing graphene oxide with microwave irradiation for efficient cellulose depolymerization into glucose vol.19, pp.16, 2015, https://doi.org/10.1039/c7gc01691c
  3. Optimization of Reducing Sugar Production from Manihot glaziovii Starch Using Response Surface Methodology vol.10, pp.1, 2017, https://doi.org/10.3390/en10010035
  4. Comparison of bioethanol production from cultivated versus wild Gracilaria verrucosa and Gracilaria gigas vol.30, pp.1, 2015, https://doi.org/10.1007/s10811-017-1297-x
  5. Enhancement of Ethanol Production via Hyper Thermal Acid Hydrolysis and Co-Fermentation Using Waste Seaweed from Gwangalli Beach, Busan, Korea vol.28, pp.3, 2018, https://doi.org/10.4014/jmb.1708.08041
  6. Evaluation of tropical seaweeds as feedstock for bioethanol production vol.15, pp.5, 2018, https://doi.org/10.1007/s13762-017-1455-3
  7. Ethanol production from Gracilaria fisheri using three marine epiphytic yeast species vol.30, pp.6, 2015, https://doi.org/10.1007/s10811-018-1527-x
  8. Comparison of ethanol production from Gracilaria fisheri and Gracilaria tenuistipitata cultivated in aquaculture system in Thailand vol.30, pp.6, 2015, https://doi.org/10.1007/s10811-018-1536-9
  9. Seaweed Bioethanol Production: A Process Selection Review on Hydrolysis and Fermentation vol.4, pp.4, 2015, https://doi.org/10.3390/fermentation4040099
  10. ACID HYDROLYSIS AS A METHOD TO VALORIZE CELLULOSIC FILTER CAKE FROM INDUSTRIAL CARRAGEENAN PROCESSING vol.6, pp.None, 2019, https://doi.org/10.31025/2611-4135/2019.13823
  11. Application of the Severity Factor and HMF Removal of Red Macroalgae Gracilaria verrucosa to Production of Bioethanol by Pichia stipitis and Kluyveromyces marxianus with Adaptive Evolution vol.187, pp.4, 2015, https://doi.org/10.1007/s12010-018-2888-y
  12. Sequential acid and enzymatic hydrolysis of carrageenan solid waste for bioethanol production: a biorefinery approach vol.31, pp.4, 2019, https://doi.org/10.1007/s10811-019-1755-8
  13. Enhancement of bioethanol production from Gracilaria verrucosa by Saccharomyces cerevisiae through the overexpression of SNR84 and PGM2 vol.42, pp.9, 2015, https://doi.org/10.1007/s00449-019-02139-0
  14. Use of Algae Biomass Obtained by Single-Step Mild Acid Hydrolysis in Hydrogen Production by the β-Glucosidase-Producing Clostridium beijerinckii Br21 vol.11, pp.4, 2015, https://doi.org/10.1007/s12649-018-0430-7
  15. Chemical Pretreatments to Enrich the Acidogenic Phase in a System Coupled Packed Bed Reactor with a UASB Reactor Using Peels and Rotten Onion Waste vol.11, pp.8, 2015, https://doi.org/10.1007/s12649-019-00751-5
  16. Levulinic Acid Production from Macroalgae: Production and Promising Potential in Industry vol.13, pp.24, 2015, https://doi.org/10.3390/su132413919