DOI QR코드

DOI QR Code

Rapid color degradation of organic dyes by Fe3O4@His@Ag recyclable magnetic nanocatalyst

  • Amir, Md. (Department of Chemistry, Fatih University) ;
  • Kurtan, U. (Department of Chemistry, Fatih University) ;
  • Baykal, A. (Department of Chemistry, Fatih University)
  • Received : 2014.12.01
  • Accepted : 2015.01.16
  • Published : 2015.07.25

Abstract

In this study, we reported the degradation of organic dyes (methyl orange, MO and methylene blue, MB) by $Fe_3O_4$@His@Ag MRC in which histidine was used as linker. The size of crystallite of MRC was calculated as 19 nm. The M-H hysteresis loop of the product indicates that it exhibits superparamagnetic property at room temperature. Catalytic studies showed that this product could catalyze the degradation of MO and MB in a reasonable time. Moreover, the product can be recycled five times by magnetic separation without major loss of its activity. Thus, $Fe_3O_4$@His@Ag MRC can be served as an effective and convenient recyclable nanocatalyst for azo dye degradation and hence as an environmental protection application too.

Keywords

Acknowledgement

Supported by : Fatih University

References

  1. F.I. Hai, K. Yamamoto, K. Fukushi, Crit. Rev. Environ. Sci. Technol. 37 (2007) 315. https://doi.org/10.1080/10643380601174723
  2. D. Sannino, V. Vaiano, O. Sacco, P. Ciambelli, J. Environ. Chem. Eng. 1 (2013) 56. https://doi.org/10.1016/j.jece.2013.03.003
  3. H. Park, W.J. Choi, Photochem. Photobiol. A 159 (2003) 241. https://doi.org/10.1016/S1010-6030(03)00141-2
  4. H.Q. Wang, G.H. Li, L.C. Jia, G.Z. Wang, C.J. Tang, J. Phys. Chem. C 112 (2008) 11738. https://doi.org/10.1021/jp803059k
  5. M. Asadullah, M. Asaduzzaman, M.S. Kabir, M.G. Mostofa, T. Miyazawa, J. Hazard. Mater. 174 (2010) 437. https://doi.org/10.1016/j.jhazmat.2009.09.072
  6. K.R. Ramakrishna, T. Viraraghavan, Water Sci. Technol. 36 (1997) 189.
  7. P. Pandit, S. Basu, Environ. Sci. Technol. 38 (2004) 2435. https://doi.org/10.1021/es030573m
  8. W.X. Chen, W.Y. Lu, Y.Y. Yao, M.H. Xu, Environ. Sci. Technol. 41 (2007) 6240. https://doi.org/10.1021/es070002k
  9. Q.A. Pankhurst, J. Connolly, S.K. Jones, J. Dobson, J. Phys. D: Appl. Phys. 36 (2003) 167. https://doi.org/10.1088/0022-3727/36/13/201
  10. A.K. Gupta, R.R. Naregalkar, V.D. Vaidya, M. Gupta, Nanomedicine 2 (2007) 23. https://doi.org/10.2217/17435889.2.1.23
  11. V.I. Shubayev, T.R. Pisanic II, S. Jin, Adv. Drug Deliv. Rev. 61 (2009) 467. https://doi.org/10.1016/j.addr.2009.03.007
  12. A.J. Cole, V.C. Yang, A.E. David, Trends Biotechnol. 29 (2011) 323. https://doi.org/10.1016/j.tibtech.2011.03.001
  13. S. Peng, C. Wang, J. Xie, S.H. Sun, J. Am. Chem. Soc. 128 (2006) 10676. https://doi.org/10.1021/ja063969h
  14. M.V. Kovalenko, M.I. Bodnarchuk, R.T. Lechner, G. Hesser, F. Schaffler, W. Heiss, J. Am. Chem. Soc. 129 (2007) 6352. https://doi.org/10.1021/ja0692478
  15. A.S. Teja, P.Y. Koh, Prog. Cryst. Growth Charact. Mater. 55 (2009) 22. https://doi.org/10.1016/j.pcrysgrow.2008.08.003
  16. H. Deng, X.L. Li, Q. Peng, X. Wang, J.P. Chen, Y.D. Li, Angew. Chem. 117 (2005) 2842. https://doi.org/10.1002/ange.200462551
  17. V. Ernest, P.J. Shiny, A. Mukherjee, N. Chandrasekaran, Carbohydr. Res. 352 (2012) 60. https://doi.org/10.1016/j.carres.2012.02.009
  18. I. Perelshtein, G. Applerot, N. Perkas, G. Guibert, S. Mikhailov, A. Gedanken, Nanotechnology 19 (2008) 245705. https://doi.org/10.1088/0957-4484/19/24/245705
  19. Y.J. Ye, J. Chen, Q.Q. Ding, D.Y. Lin, R.L. Dong, L.B. Yang, J.H. Liu, Nanoscale 5 (2013) 5887. https://doi.org/10.1039/c3nr01273e
  20. Y.X. Zhang, X.Y. Yu, Y. Jia, Z. Jin, J.H. Liu, X.J. Huang, Eur. J. Inorg. Chem. 33 (2011) 5096.
  21. S. Lijuan, H. Jiang, A. Songsong, Z. Junwei, Z. Jinmin, R. Dong, Chin. J. Catal. 34 (2013) 1378. https://doi.org/10.1016/S1872-2067(12)60605-6
  22. M. Tang, S. Zhang, X. Li, X. Pang, H. Qiu, Mater. Chem. Phys. 148 (2014) 639. https://doi.org/10.1016/j.matchemphys.2014.08.029
  23. P.B. Shete, R.M. Patil, B.M. Tiwale, S.H. Pawar, J. Magn. Magn. Mater. 377 (2015) 406. https://doi.org/10.1016/j.jmmm.2014.10.137
  24. A. Demir, A. Baykal, H. So zeri, Turk. J. Chem. 38 (2014) 825. https://doi.org/10.3906/kim-1401-73
  25. A.M. Petrosyan, Vib. Spectrosc. 43 (2007) 284. https://doi.org/10.1016/j.vibspec.2006.03.001
  26. B. U nal, Z. Durmus, A. Baykal, H. So zeri, M.S. Toprak, L. Alpsoy, J. Alloy Compd. 505 (2010) 172. https://doi.org/10.1016/j.jallcom.2010.06.022
  27. E. Murugan, J.N. Jebaranjitham, J. Mol. Struct. 365 (2012) 128.
  28. Z. Durmus, H. Kavas, A. Baykal, H. Sozeri, L. Alpsoy, S.U .C. elik, M.S. Toprak, J. Alloy Compd. 509 (2011) 2555. https://doi.org/10.1016/j.jallcom.2010.11.088
  29. P. Kumar, M. Govindaraju, S. Senthamilselvi, K. Premkumar, Colloids Surf. B: Biointerface 103 (2013) 658. https://doi.org/10.1016/j.colsurfb.2012.11.022
  30. X. Zhang, W. Jiang, X. Gong, Z. Zhang, J. Alloy Compd. 508 (2010) 400. https://doi.org/10.1016/j.jallcom.2010.08.070
  31. L. Sun, J. He, S. An, J. Zhang, J. Zheng, D. Ren, Chin. J. Catal. 34 (2013) 1378. https://doi.org/10.1016/S1872-2067(12)60605-6
  32. Y. Chi, Q. Yuan, Y. Li, L. Zhao, N. Li, X. Li, W. Yan, J. Hazard. Mater. 262 (2013) 404. https://doi.org/10.1016/j.jhazmat.2013.08.077
  33. Y. Chi, Q. Yuan, Y. Li, J. Tu, L. Zhao, N. Li, X. Li, J. Colloid Interface Sci. 383 (2012) 96. https://doi.org/10.1016/j.jcis.2012.06.027
  34. U. Kurtan, A. Baykal, Mater. Res. Bull. 60 (2014) 79. https://doi.org/10.1016/j.materresbull.2014.08.016
  35. D. Gaofei, S. Yan, F. Zhifeng, Y. Wantai, Chin. J. Catal. 33 (2012) 651. https://doi.org/10.1016/S1872-2067(11)60369-0
  36. V.K. Vidhu, D. Philip, Micron 56 (2014) 54. https://doi.org/10.1016/j.micron.2013.10.006
  37. T. Shahwan, S.A. Sirriah, M. Nairat, E. Boyac, A.E. Eroglu, T.B. Scott, K.R. Hallam, Chem. Eng. J. 172 (2011) 258. https://doi.org/10.1016/j.cej.2011.05.103
  38. M.A. Rauf, M.A. Meetan, A. Khaleel, A. Ahmed, Chem. Eng. J. 157 (2010) 373. https://doi.org/10.1016/j.cej.2009.11.017
  39. N. Gupta, H. Premananda Singh, R. Kumar Sharma, J. Mol. Catal. A: Chem. 335 (2011) 248. https://doi.org/10.1016/j.molcata.2010.12.001

Cited by

  1. Synthesis and application of magnetically recyclable nanocatalyst Fe3O4@Nico@Cu in the reduction of azo dyes vol.36, pp.8, 2015, https://doi.org/10.1016/s1872-2067(15)60879-8
  2. Synthesis of Chitosan-Mediated Silver Coated γ-Fe2O3 (Ag−γ-Fe2O3@Cs) Superparamagnetic Binary Nanohybrids for Multifunctional Applications vol.120, pp.31, 2015, https://doi.org/10.1021/acs.jpcc.6b05851
  3. Reductant-Free Synthesis of Silver Nanoparticles-Doped Cellulose Microgels for Catalyzing and Product Separation vol.4, pp.12, 2015, https://doi.org/10.1021/acssuschemeng.6b00889
  4. Enhanced antibacterial performance of Fe3O4-Ag and MnFe2O4-Ag nanocomposites vol.40, pp.1, 2015, https://doi.org/10.1007/s12034-016-1357-x
  5. Polydopamine-Coated Fe 3 O 4 Nanoparticles as Synergistic Redox Mediators for Catalytic Reduction of Azo Dyes vol.12, pp.3, 2015, https://doi.org/10.1142/s1793292017500370
  6. Photocatalytic Degradation of Azo Dyes and Organic Contaminants in Wastewater Using Magnetically Recyclable Fe3O4@UA-Cu Nano-catalyst vol.148, pp.4, 2015, https://doi.org/10.1007/s10562-018-2322-7
  7. Sustainable Catalytic Activity of Ag-Coated Chitosan-Capped γ-Fe2O3 Superparamagnetic Binary Nanohybrids (Ag-γ-Fe2O3@CS) for the Reduction of En vol.3, pp.2, 2015, https://doi.org/10.1021/acsomega.7b01498
  8. Green synthesis of Fe3O4@SiO2‐Ag magnetic nanocatalyst using safflower extract and its application as recoverable catalyst for reduction of dye pollutants in wat vol.32, pp.4, 2015, https://doi.org/10.1002/aoc.4249
  9. Highly Efficient, Low-Cost, and Magnetically Recoverable FePt–Ag Nanocatalysts: Towards Green Reduction of Organic Dyes vol.8, pp.5, 2015, https://doi.org/10.3390/nano8050329
  10. Synthesis and characterization of Pd nanoparticle-modified magnetic Sm2O3-ZrO2 as effective multifunctional catalyst for reduction of 2-nitrophenol and degradation of organic dyes vol.15, pp.8, 2015, https://doi.org/10.1007/s13738-018-1369-0
  11. Green biosynthesis of silver nanoparticles decorated on multi-walled carbon nanotubes using the extract of Pistacia atlantica leaves as a recyclable heterogeneous nanocatalyst for degradation of organ vol.164, pp.None, 2015, https://doi.org/10.1016/j.poly.2019.02.010
  12. Green biosynthesis of silver nanoparticles decorated on multi-walled carbon nanotubes using the extract of Pistacia atlantica leaves as a recyclable heterogeneous nanocatalyst for degradation of organ vol.164, pp.None, 2015, https://doi.org/10.1016/j.poly.2019.02.010
  13. Green synthesis of Ag2S nanoparticles on cellulose/Fe3O4 nanocomposite template for catalytic degradation of organic dyes vol.26, pp.11, 2019, https://doi.org/10.1007/s10570-019-02550-6
  14. Au Nanoparticles Immobilized in Fe 3 O 4 /SBA‐16 Functionalized Melamine-α-Chloroacetic Acid as a Recoverable Nanocatalyst for Reduction of Dye Pollutants in Water vol.4, pp.25, 2015, https://doi.org/10.1002/slct.201901421
  15. Application of palladium nanoparticle‐decorated Artemisia abrotanum extract‐modified graphene oxide for highly active catalytic reduction of methylene blue, methyl orange and rhodamine B vol.33, pp.10, 2019, https://doi.org/10.1002/aoc.5123
  16. Application of palladium nanoparticle‐decorated Artemisia abrotanum extract‐modified graphene oxide for highly active catalytic reduction of methylene blue, methyl orange and rhodamine B vol.33, pp.10, 2019, https://doi.org/10.1002/aoc.5123
  17. Rational Design of Multisite Trielement Ru-Ni-Fe Alloy Nanocatalysts with Efficient and Durable Catalytic Hydrogenation Performances vol.11, pp.44, 2015, https://doi.org/10.1021/acsami.9b10398
  18. Synthesis of lignin-functionalized phenolic nanosphere supported Ag nanoparticles with excellent dispersion stability and catalytic performance vol.22, pp.9, 2015, https://doi.org/10.1039/c9gc04311j
  19. Synthesis and characterization of Fe3O4@Cs@Ag nanocomposite and its use in the production of magnetic and antibacterial nanofibrous membranes vol.521, pp.None, 2020, https://doi.org/10.1016/j.apsusc.2020.146332
  20. Magnetic materials for photocatalytic applications-a review vol.96, pp.1, 2015, https://doi.org/10.1007/s10971-020-05333-9
  21. Synthesis of STAR‐SHAPED CUO nanoparticles supported on magnetic functionalized graphene: Catalytic and antibacterial activity vol.67, pp.11, 2015, https://doi.org/10.1002/jccs.202000097
  22. Reductant‐Free and In‐Situ Green Synthesis of Ag Nanoparticles on Fe 3 O 4 @Nanocellulose and Their Catalytic Activity for the Reduction of Dyes vol.6, pp.6, 2015, https://doi.org/10.1002/slct.202004579
  23. Development of highly active, chemically stable and recyclable magnetic nanophotocatalyst based on plasmonic silver nanoparticles and photosensitive trans‐3‐(trans‐4‐imidazolyl vol.35, pp.6, 2015, https://doi.org/10.1002/aoc.6229
  24. The Application of Nanoenzymes in Biology Detection vol.804, pp.4, 2015, https://doi.org/10.1088/1755-1315/804/4/042018
  25. Preparation of Magnetically Recoverable MPCTP-Ag Composite Nanoparticles and Their Application as High-Performance Catalysts vol.37, pp.34, 2015, https://doi.org/10.1021/acs.langmuir.1c00944
  26. Ultrafast catalytic reduction of toxic nitroaromatics and organic colouring dyes by using Au/ZIF-11: Efficient wastewater treatment vol.44, pp.None, 2021, https://doi.org/10.1016/j.jwpe.2021.102362
  27. Enhanced activation of persulfate by CuCoFe2O4@MC/AC as a novel nanomagnetic heterogeneous catalyst with ultrasonic for metronidazole degradation vol.286, pp.p3, 2015, https://doi.org/10.1016/j.chemosphere.2021.131872