DOI QR코드

DOI QR Code

Effect of backbone moiety in diglycidylether-terminated liquid crystalline epoxy on thermal conductivity of epoxy/alumina composite

  • Giang, Thanhkieu (Department of Polymer Science and Engineering, Sungkyunkwan University) ;
  • Kim, Jinhwan (Department of Polymer Science and Engineering, Sungkyunkwan University)
  • Received : 2015.03.18
  • Accepted : 2015.05.05
  • Published : 2015.10.25

Abstract

Three diglycidylether-terminated liquid crystalline epoxy (LCE) structures based on azomethine mesogen, 4'4'-bis(4-hydroxybenzylidene)-diaminodiphenylether diglycidylether (LCE-DPE), 4'4'-bis(4-hydroxybenzylidene)-diaminophenylene diglycidylether (LCE-DP), and terephthalylidene-bis-(4-aminophenol) diglycidylether (LCE-TA) were synthesized in an attempt to investigate the effect of backbone moiety in epoxy on the thermal conductivity of LCE/alumina ($Al_2O_3$) composite. The synthesized species were characterized by $^1H$-NMR, FT-IR, Difference scanning calorimetry (DSC), Thermogravimetric analysis (TGA), and Optical microscope (OM). The liquid crystalline properties of three LCE resins themselves and the epoxy systems cured with an identical curing agent, 4,4'-diaminodiphenylsulfone (DDS) were examined using DSC and OM. The results show that all three LCE resins exhibit typical liquid crystalline behaviors: clear solid crystalline state below its melting temperature ($T_m$), sharp crystalline melting at $T_m$, transitions into either nematic or smectic mesophase above $T_m$, and consequent isotropic phase above isotropic temperature ($T_i$). The thermal conductivity was measured by laser flash method and the results were compared with the theoretical model. Experimental data fit well with the well-known Agari-Uno's theoretical model. It was found that the thermal conductivity of $LCE/Al_2O_3$ composite is strongly dependent on the backbone structure of LCE and the more the ordering in LCE backbone the higher the thermal conductivity.

Keywords

Acknowledgement

Supported by : Ministry of Trade, Industry and Energy, Ministry of Science, ICT & Future Planning

References

  1. T. Giang, J. Part, I. Cho, Y. Ko, J. Kim, Polym. Comp. 34 (2013) 468. https://doi.org/10.1002/pc.22435
  2. P. Castell, M. Galia, A. Serra, Macromol. Chem. Phys. 202 (2001) 1649. https://doi.org/10.1002/1521-3935(20010601)202:9<1649::AID-MACP1649>3.0.CO;2-X
  3. B. Koscielny, A. Pfitzmann, M. Fedtke, Polym. Bull. 32 (1994) 529. https://doi.org/10.1007/BF00973898
  4. C. Ortiz, R. Kim, E. Rodighiero, C.K. Ober, E.J. Kramer, Macromolecules 31 (1998) 4074. https://doi.org/10.1021/ma971439n
  5. V. Ambrogi, C. Carfagna, M. Giamberini, E. Amendola, E.P. Douglas, J. Adhes. Sci. Technol. 16 (2002) 15. https://doi.org/10.1163/15685610252771130
  6. T. Mihara, Y. Nishimiya, N. Koide, J. Appl. Polym. Sci. 68 (1998) 1979. https://doi.org/10.1002/(SICI)1097-4628(19980620)68:12<1979::AID-APP12>3.0.CO;2-N
  7. J. Jang, J. Bae, K. Lee, Polymer 46 (2005) 3677. https://doi.org/10.1016/j.polymer.2005.03.030
  8. S. Cho, E.P. Douglas, J.Y. Lee, J. Polym. Eng. Sci. 46 (2006) 623. https://doi.org/10.1002/pen.20496
  9. A. Bruggeman, S.B. Damman, A.H.A. Tinnemans, J. Appl. Polym. Sci. 66 (1997) 1971. https://doi.org/10.1002/(SICI)1097-4628(19971205)66:10<1971::AID-APP13>3.0.CO;2-Y
  10. H.J. Sue, J.D. Earls, R.E. Hefner, J. Mater. Sci. 32 (1997) 4031. https://doi.org/10.1023/A:1018641621725
  11. Q. Lin, A.F. Yee, Polymer 35 (1994) 2679. https://doi.org/10.1016/0032-3861(94)90399-9
  12. E. Amendola, C. Carfagna, M. Giamberini, G. Pisaniello, Macromol. Chem. Phys. 196 (1995) 1577. https://doi.org/10.1002/macp.1995.021960516
  13. W.A. Su, J. Polym. Sci., A: Polym. Chem. 31 (1993) 3251. https://doi.org/10.1002/pola.1993.080311312
  14. C. Lin, L. Chien, Macromol. Rapid Commun. 16 (1995) 869. https://doi.org/10.1002/marc.1995.030161114
  15. A. Mititelu, C.N. Cascaval, Polym. Plast. Technol. Eng. 44 (2005) 151. https://doi.org/10.1081/PTE-200046107
  16. J.J. Mallon, P.M. Adams, J. Polym. Sci., A: Polym. Chem. 31 (1993) 2249. https://doi.org/10.1002/pola.1993.080310908
  17. C. Carfagn, E. Amendola, M. Giamberini, Macromol. Chem. Phys. 195 (1994) 2307. https://doi.org/10.1002/macp.1994.021950703
  18. A. Mititelu-Mija, C.N. Cascaval, P. Navard, Des. Monomers Polym. 8 (2005) 487. https://doi.org/10.1163/1568555054937944
  19. Y. Yu, M. Wang, X. Liu, L. Zhao, X. Tang, S. Li, J. Appl. Polym. Sci. 101 (2006) 4366. https://doi.org/10.1002/app.24322
  20. Y. Zheng, S. Ren, Y. Ling, M. Lu, Mol. Cryst. Liq. Cryst. 452 (2006) 3. https://doi.org/10.1080/15421400500376539
  21. J.Y. Lee, J. Jang, Polymer 47 (2006) 3036. https://doi.org/10.1016/j.polymer.2006.03.009
  22. J. Gao, G. Hou, Y. Wang, H. Li, Y. Liu, Polym. Plast. Technol. Eng. 45 (2006) 947. https://doi.org/10.1080/03602550600718183
  23. Z. Cai, J. Sun, Q. Zhou, J. Xu, J. Polym. Sci., A: Polym. Chem. 45 (2007) 727. https://doi.org/10.1002/pola.21821
  24. Z. Cai, J. Sun, D. Wang, Q. Zhou, J. Polym. Sci., A: Polym. Chem. 45 (2007) 3922. https://doi.org/10.1002/pola.22143
  25. L. Pottie, F. Costa-Torroa, M. Tessier, P. Davidson, A. Fradet, Liq. Cryst. 35 (2008) 913. https://doi.org/10.1080/02678290802266944
  26. Z. Gao, Y. Yu, Y. Xu, S. Li, J. Appl. Polym. Sci. 105 (2007) 1861. https://doi.org/10.1002/app.26384
  27. M. Ochi, H. Takashima, Polymer 42 (2001) 2379. https://doi.org/10.1016/S0032-3861(00)00588-7
  28. A. Mija, P. Navard, C. Peiti, D. Babor, N. Guigo, Eur. Polym. 46 (2010) 1380. https://doi.org/10.1016/j.eurpolymj.2010.04.001
  29. E.J. Choi, H. Ahn, J.K. Lee, J. Jin, Polymer 41 (2000) 7617. https://doi.org/10.1016/S0032-3861(00)00111-7
  30. D. Ribera, A. Mantecon, A. Serra, Macromol. Chem. Phys. 202 (2001) 1658. https://doi.org/10.1002/1521-3935(20010601)202:9<1658::AID-MACP1658>3.0.CO;2-0
  31. K. Fukushima, H. Takahashi, Y. Takezawal, M. Hattori, M. Itoh, M. Yonekura, Electrical Insulation and Dielectric Phenomena, 2004. CEIDP '04. 2004 Annual Report Conference on, Colorado City, AZ, (2004), p. 340.
  32. M. Akatsuka, Y. Takezawa, J. Appl. Polym. Sci. 89 (2003) 2464. https://doi.org/10.1002/app.12489
  33. N. Tokushige, T. Mihara, N. Koide, Mol. Cryst. Liq. Cryst. 428 (2005) 33. https://doi.org/10.1080/154214090892681
  34. M. Harada, M. Ochi, M. Tobita, T. Kimura, T. Isgigaki, N. Shimoyama, H. Aoki, J. Polym. Sci., A: Polym. Chem. 41 (2003) 1739. https://doi.org/10.1002/polb.10531
  35. F.G. Garcia, B.G. Soares, Polym. Test 22 (2003) 51. https://doi.org/10.1016/S0142-9418(02)00048-X
  36. S.A. Garea, A.C. Corbu, C. Deleanu, H. Iovu, Polym. Test 25 (2006) 107. https://doi.org/10.1016/j.polymertesting.2005.09.003
  37. W. Mormann, M. Brocher, Polymer 40 (1998) 193.
  38. W. Mormann, M. Brocher, Macromol. Chem. Phys. 199 (1998) 853. https://doi.org/10.1002/(SICI)1521-3935(19980501)199:5<853::AID-MACP853>3.0.CO;2-S
  39. N.B. Chapman, N.S. Isaacs, R.E. Parker, J. Chem. Soc. 0 (1959) 1925.
  40. D. Ros, A. Mititelu, C.N. Cascaval, Polym. Test 23 (2004) 209. https://doi.org/10.1016/S0142-9418(03)00082-5
  41. J.H. Kim, H.Y. Yu, J.Y. Lee, S.W. Kim, J. Ind. Eng. Chem. 8 (2002) 34.
  42. B. Bahadur, Liquid Crystals-Application and Uses, vol. 1, World Scientific, Ontario, 1990, pp. 1-87.
  43. G.G. Barklay, C.K. Ober, K.I. Papathomas, D.W. Wang, Macromolecules 25 (1992) 2947. https://doi.org/10.1021/ma00037a025
  44. V. Krevelen, Properties of Polymers, third ed., Elsevier, New York, NY, 1990p. p525.
  45. A. Majumdar, Handbook of Heat Transfer, third ed., McGraw-Hill, New York, NY, 1998p. 8.1.
  46. L.E. Nielsen, Ind. Eng. Chem. Fundam. 13 (1974) 17. https://doi.org/10.1021/i160049a004
  47. R. Pal, Composites, A: Appl. Sci. Manuf. 39 (2008) 718. https://doi.org/10.1016/j.compositesa.2008.02.008
  48. Y. Agari, J. Appl. Polym. Sci. 49 (1993) 1625. https://doi.org/10.1002/app.1993.070490914
  49. Y. Agari, T. Uno, J. Appl. Polym. Sci. 30 (1985) 2225. https://doi.org/10.1002/app.1985.070300534
  50. J.E. Mark, Physical Properties of Polymer Handbook, second ed., Springer, New York, NY, 2007p. 155.
  51. M. Tobia, T. Kimura, T. Ishigaki, N. Shimoyama, H. Aoki, M. Ochi, M. Harada, U.S. Patent, 0224163 A1 (2004).

Cited by

  1. Synergetic effect of hexagonal nitride nanopowder and graphene nanosheets on thermal and electrical conductivity of the hBN/GNs/CE resin nanocomposites vol.27, pp.6, 2015, https://doi.org/10.1007/s10854-016-4552-z
  2. Thermal Conductivity of Diglycidylester-Terminated Liquid Crystalline Epoxy/Alumina Composite vol.629, pp.1, 2016, https://doi.org/10.1080/15421406.2015.1107816
  3. 불소화 일라이트 및 탄소나노튜브 강화 에폭시 복합재의 기계적 및 열적 특성 vol.27, pp.3, 2015, https://doi.org/10.14478/ace.2016.1033
  4. Recently emerging trends in thermal conductivity of polymer nanocomposites vol.32, pp.4, 2015, https://doi.org/10.1515/revce-2016-0004
  5. Effect of Liquid-Crystalline Epoxy Backbone Structure on Thermal Conductivity of Epoxy-Alumina Composites vol.46, pp.1, 2017, https://doi.org/10.1007/s11664-016-4704-1
  6. Epoxy thermoset resins with high pristine thermal conductivity vol.2, pp.3, 2015, https://doi.org/10.1049/hve.2017.0120
  7. Dispersing Nanoparticles by Chiral Liquid Crystalline Elastomers for Performance Enhancement of Epoxy Nanocomposites vol.303, pp.10, 2015, https://doi.org/10.1002/mame.201800215
  8. Benzoxazine-epoxy thermosets with smectic phase structures for high thermal conductive materials vol.46, pp.11, 2015, https://doi.org/10.1080/02678292.2019.1595755
  9. Biphenyl liquid crystal epoxy containing flexible chain: Synthesis and thermal properties vol.137, pp.38, 2015, https://doi.org/10.1002/app.49143
  10. Thermal conductivity enhancement of liquid crystalline epoxy/MgO composites by formation of highly ordered network structure vol.138, pp.19, 2015, https://doi.org/10.1002/app.50367