DOI QR코드

DOI QR Code

Characteristics of a high compressive strength graphite foam prepared from pitches using a PVA-AAc solution

  • Kim, Ji-Hyun (Department of Applied Chemistry and Biological Engineering, Chungnam National University) ;
  • Lee, Young-Seak (Department of Applied Chemistry and Biological Engineering, Chungnam National University)
  • Received : 2015.03.28
  • Accepted : 2015.05.12
  • Published : 2015.10.25

Abstract

A facile method applied for preparing high-compressive-strength graphite foams in which pitch was added to a PVA-AAc (polyvinyl alcohol-acrylic acid) solution. Various amounts of pitch were added to a polymer solution to control the pore sizes and apparent densities of resulting foams. The pore size of graphite foam was reduced by increasing the slurry concentration, and its apparent density ranged from 0.12 to $0.61g/cm^3$. The graphite foam prepared using a hydrogel template had a high-compressive-strength of $7.90{\pm}1.02MPa$ and a thermal conductivity of $5.17{\pm}0.02W/mK$. The proposed method was applied successfully for high-compressive-strength graphite foams.

Keywords

Acknowledgement

Supported by : Agency for Defense Development

References

  1. H. Nishihara, T. Kyotani, Adv. Mater. 24 (2012) 4473. https://doi.org/10.1002/adma.201201715
  2. M. Calvo, R. Garcia, A. Arenillas, I. Suarez, S.R. Moinelo, Fuel 84 (2005) 2184. https://doi.org/10.1016/j.fuel.2005.06.008
  3. W.W. Focke, H. Badenhorst, S. Ramjee, H.J. Kruger, R.V. Schalkwyd, B. Rand, Carbon 73 (2014) 41. https://doi.org/10.1016/j.carbon.2014.02.035
  4. W. Dong, H.C. Liu, S.J. Park, F.L. Jin, J. Ind. Eng. Chem. 20 (2014) 1220. https://doi.org/10.1016/j.jiec.2013.06.053
  5. M.J. Jung, J.Y. Jung, D. Lee, Y.S. Lee, J. Ind. Eng. Chem. 22 (2015) 70. https://doi.org/10.1016/j.jiec.2014.06.026
  6. J.Y. Jung, M.S. Park, M.I. Kim, Y.S. Lee, Carbon Lett. 15 (4) (2014) 262. https://doi.org/10.5714/CL.2014.15.4.262
  7. F.G. Emmerich, Carbon 79 (2014) 274. https://doi.org/10.1016/j.carbon.2014.07.068
  8. J.J. Kyung, J.J. Kim, S.R. Kim, W.T. Kwon, K.Y. Cho, Y.H. Kim, J. Korean Ceram. Soc. 44 (11) (2007) 622. https://doi.org/10.4191/KCERS.2007.44.1.622
  9. J. Sanchez-Coronado, D.D.L. Chung, Carbon 41 (2003) 1175. https://doi.org/10.1016/S0008-6223(03)00025-3
  10. J. Klett, R. Hardy, E. Romine, C. Walls, T. Burchell, Carbon 38 (2000) 953. https://doi.org/10.1016/S0008-6223(99)00190-6
  11. C. Hou, Q. Zhang, Y. Li, H. Wang, Carbon 50 (2012) 1959. https://doi.org/10.1016/j.carbon.2011.12.049
  12. J. Song, Q. Guo, Y. Zhong, X. Gao, Z. Feng, F. Zhen, J. Shi, L. Liu, New Carbon Mater. 27 (1) (2012) 27. https://doi.org/10.1016/S1872-5805(12)60002-X
  13. Z. Zhao, X. Wang, J. Qiu, J. Lin, D. Xu, C. Zhang, M. Lv, X. Yang, Rev. Adv. Mater. Sci. 36 (2014) 137.
  14. A. Yadav, R. Kumar, G. Bhatia, G.L. Verma, Carbon 49 (2011) 3622. https://doi.org/10.1016/j.carbon.2011.04.065
  15. D.W. Wang, F. Li, M. Liu, G.Q. Lu, H.M. Cheng, Angew. Chem. Int. Ed. 47 (2008) 373. https://doi.org/10.1002/anie.200702721
  16. L. Zhang, X. Yang, F. Zhang, G.K. Long, T.F. Zhang, K. Leng, Y.W. Zhang, Y. Huang, Y.F. Ma, M.T. Zhang, Y.S. Cheng, J. Am. Chem. Soc. 135 (2013) 5921. https://doi.org/10.1021/ja402552h
  17. W. Chen, R.B. Rakhi, L.B. Hu, Y. Xie, Y. Cui, Nano Lett. 11 (2011) 5165. https://doi.org/10.1021/nl2023433
  18. S.B. Yang, X.L. Feng, L. Wang, K. Tang, J. Maier, Angew. Chem. Int. Ed. 49 (2010) 4795. https://doi.org/10.1002/anie.201001634
  19. Z.S. Wu, Y. Sun, Y.Z. Tan, S.B. Yang, X.L. Feng, J. Am. Chem. Soc. 134 (2012) 19532. https://doi.org/10.1021/ja308676h
  20. Y. Fang, Y.Y. Lv, R.C. Che, H.Y. Wu, X.H. Zhang, D. Gu, F. Zheng, D.Y. Zhao, J. Am. Chem. Soc. 135 (2013) 1524. https://doi.org/10.1021/ja310849c
  21. Z.J. Fan, J. Yan, L.J. Zhi, Q. Zhang, T. Wei, J. Feng, M.L. Zhang, W.Z. Qian, Adv. Mater. 22 (2010) 3723. https://doi.org/10.1002/adma.201001029
  22. M.J. Zhong, E.K. Kim, J.P. McGann, S.E. Chun, J.F. Whitacre, M. Jaroniec, K. Matyjaszewski, T. Kowalewski, J. Am. Chem. Soc. 134 (2012) 14846. https://doi.org/10.1021/ja304352n
  23. D. Zhang, Q.Q. Dong, X. Wang, W. Yan, W. Deng, L.Y. Shi, J. Phys. Chem. C 117 (2013) 20446. https://doi.org/10.1021/jp405850w
  24. C. Zhai, Z. Li, Y. Zhu, J. Zhang, X. Wang, L. Zhao, L. Pan, P. Wang, Adv. Mater. Sci. Eng. 2014 (2014) 1.
  25. Y. Zhao, Z.J. Liu, H.Q. Wang, J.L. Shi, J.C. Zhang, Z.C. Tao, Carbon 53 (2013) 313. https://doi.org/10.1016/j.carbon.2012.11.013
  26. Y. Zhao, J.L. Shi, H.Q. Wang, Z.C. Tao, Z.J. Liu, Q.G. Guo, Carbon 51 (2013) 427. https://doi.org/10.1016/j.carbon.2012.08.053
  27. S.A. Solin, R.J. Nemanich, Phys. Rev. B: Condens. Matter 20 (1979) 392. https://doi.org/10.1103/PhysRevB.20.392
  28. G.Y. Heo, Y.J. Yoo, S.J. Park, J. Ind. Eng. Chem. 19 (2013) 1040. https://doi.org/10.1016/j.jiec.2012.11.028
  29. B.S. Kim, J.H. Park, N. Hong, J. Bae, C.S. Yang, K. Shin, J. Ind. Eng. Chem. 19 (2013) 1631. https://doi.org/10.1016/j.jiec.2013.01.034
  30. M. Inagaki, J. Qiu, Q. Guo, Carbon 87 (2015) 128. https://doi.org/10.1016/j.carbon.2015.02.021
  31. Y.I. Jang, N.J. Dudney, T.N. Tiegs, J.W. Klett, J. Power Sources 161 (2006) 1392. https://doi.org/10.1016/j.jpowsour.2006.04.124
  32. J.H. Han, K.W. Cho, K.H. Lee, H. Kim, Carbon 36 (12) (1998) 1801. https://doi.org/10.1016/S0008-6223(98)00150-X
  33. W.Q. Li, H.B. Zhang, X. Xiong, J. Mater. Sci. 46 (2011) 1143. https://doi.org/10.1007/s10853-010-5099-7
  34. M. Wang, C.Y. Wang, T.Q. Li, Z.J. Hu, Compos. Sci. Technol. 68 (2008) 2220. https://doi.org/10.1016/j.compscitech.2008.04.007
  35. J. Kuang, L. Liu, Y. Gao, D. Zhou, Z. Chen, B. Hana, Z. Zhang, Nanoscale 5 (2013) 12171. https://doi.org/10.1039/c3nr03379a
  36. Y. Xu, K. Sheng, C. Li, G. Shi, ACS Nano 4 (7) (2010) 4324. https://doi.org/10.1021/nn101187z
  37. Y. Li, J. Chen, L. Huang, C. Li, J.D. Hong, G. Shi, Adv. Mater. 26 (2014) 4789. https://doi.org/10.1002/adma.201400657

Cited by

  1. PVA-AAc 용액을 사용한 메조페이스 핏치기반 그라파이트 폼의 제조 및 특성 vol.26, pp.6, 2015, https://doi.org/10.14478/ace.2015.1102
  2. 불소화 메조페이스 핏치로 제조된 그라파이트 폼의 물리/화학적 특성 vol.54, pp.6, 2015, https://doi.org/10.9713/kcer.2016.54.6.830
  3. The effects of carbon coating onto graphite filler on the structure and properties of carbon foams vol.21, pp.None, 2015, https://doi.org/10.5714/cl.2017.21.111
  4. 석유계 바인더 피치의 β-resin이 탄소블럭의 밀도에 미치는 영향 vol.28, pp.4, 2015, https://doi.org/10.14478/ace.2017.1035
  5. 고밀도 탄소블럭 제조를 위한 코크스와 바인더피치의 젖음성에 미치는 불소화의 영향 vol.29, pp.6, 2018, https://doi.org/10.14478/ace.2018.1080
  6. Carbon foams: 3D porous carbon materials holding immense potential vol.8, pp.45, 2015, https://doi.org/10.1039/d0ta08749a
  7. Carbon foams: 3D porous carbon materials holding immense potential vol.8, pp.45, 2015, https://doi.org/10.1039/d0ta08749a