DOI QR코드

DOI QR Code

Influence of chemical surface treatment of basalt fibers on interlaminar shear strength and fracture toughness of epoxy-based composites

  • Received : 2014.10.06
  • Accepted : 2015.08.17
  • Published : 2015.12.25

Abstract

In our study, the effect of chemically treated basalt fibers on the mechanical interfacial properties of basalt fibers reinforced epoxy composites was investigated. The surface properties of the basalt fibers were determined by Fourier Transform Infrared (FT-IR) spectroscopy. The surface structure of the basalt fibers was analyzed Atomic Force Microscopy (AFM). The acid and alkali chemical treatments led to significant changes in the surface characteristics of the fibers. The chemically treated fibers improved the mechanical interfacial properties, interlaminar shear strength (ILSS) and fracture toughness (KIC) of the composites. Composites treated with $H_2SO_4$ had higher values of ILSS and KIC than the KOH-treated composites. These results are attributed to the improvement of interfacial bonding strength, which was caused by an increase of the surface roughness of basalt fibers.

Keywords

Acknowledgement

Supported by : Ministry of Trade, Industry & Energy (MI)

References

  1. R.B. Daniel, E.G. Heras, I. Martin-Gullon, Macromolecules 5 (2012) 238.
  2. A.A. Azeez, K.Y. Rhee, S.J. Park, D. Hui, Compos. Part B 45 (2013) 308. https://doi.org/10.1016/j.compositesb.2012.04.012
  3. W. Dong, H.C. Liu, S.J. Park, F.L. Jin, J. Ind. Eng. Chem. 20 (2014) 1220. https://doi.org/10.1016/j.jiec.2013.06.053
  4. S.J. Park, T.J. Kim, Fig. J.R. Lee, J. Polym. Sci. Pol. Phys. 38 (2000) 2114. https://doi.org/10.1002/1099-0488(20000815)38:16<2114::AID-POLB50>3.0.CO;2-8
  5. S.E. Lee, S. Cho, Y.S. Lee, Carbon Lett. 15 (2014) 32. https://doi.org/10.5714/CL.2014.15.1.032
  6. M.T. Kim, K.Y. Rhee, I. Jung, S.J. Park, D. Hui, Compos. Part B 63 (2014) 61. https://doi.org/10.1016/j.compositesb.2014.03.010
  7. C. Colombo, L. Vergani, M. Burman, Compos. Struct. 94 (2012) 1165. https://doi.org/10.1016/j.compstruct.2011.10.007
  8. A. Dorigato, A. Pegoretti, J. Compos. Mater. 46 (2012) 1773. https://doi.org/10.1177/0021998311425620
  9. S.J. Park, J.S. Jin, J. Colloid Interface Sci. 242 (2001) 174. https://doi.org/10.1006/jcis.2001.7788
  10. S.L. Han, H.J. Oh, S.S. Kim, Compos. Part B 60 (2014) 98. https://doi.org/10.1016/j.compositesb.2013.12.069
  11. M.T. Kim, M.H. Kim, K.Y. Rhee, S.J. Park, Compos. Part B 42 (2011) 499. https://doi.org/10.1016/j.compositesb.2010.12.001
  12. B. Wei, H.L. Cao, S.H. Song, Compos. Part A 42 (2011) 22. https://doi.org/10.1016/j.compositesa.2010.09.010
  13. S.J. Park, B.J. Park, J. Mater. Sci. Lett. 18 (1999) 47. https://doi.org/10.1023/A:1006673309571
  14. M.T. Kim, K.Y. Rhee, S.J. Park, D. Hui, Compos. Part B 43 (2012) 2298. https://doi.org/10.1016/j.compositesb.2011.12.007
  15. V. Manikandan, J.T.W. Jappes, S.M.S. Kumar, P. Amuthakkannan, Compos. Part B 43 (2012) 812. https://doi.org/10.1016/j.compositesb.2011.11.009
  16. J.X. Liu, M. Jiang, Y. Wang, G. Wu, Z.S. Wu, Ceram. Int. 39 (2013) 9173. https://doi.org/10.1016/j.ceramint.2013.05.018
  17. M.C. Wang, Z.G. Zhang, Y. Li, M. Li, Z.J. Sun, J. Reinf. Plast. Compos. 27 (2008) 393. https://doi.org/10.1177/0731684407084119
  18. B. Wei, H.L. Cao, S.H. Song, Mater. Des. 31 (2010) 4244. https://doi.org/10.1016/j.matdes.2010.04.009
  19. S.J. Park, M.K. Seo, T.J. Ma, D.R. Lee, J. Colloid Interface Sci. 252 (2002) 249. https://doi.org/10.1006/jcis.2002.8479
  20. S.J. Park, M.K. Seo, K.Y. Rhee, Mater. Sci. Eng. A-Struct. 356 (2003) 219. https://doi.org/10.1016/S0921-5093(03)00134-5
  21. J. Jancar, Compos. Interfaces 13 (2006) 853. https://doi.org/10.1163/156855406779366813
  22. S.J. Park, H.J. Jeong, C. Nah, Mater. Sci. Eng. A-Struct. 385 (2004) 13. https://doi.org/10.1016/j.msea.2004.03.041
  23. J.R. Choi, Y.S. Lee, S.J. Park, J. Ind. Eng. Chem. 20 (2014) 3421. https://doi.org/10.1016/j.jiec.2013.12.029

Cited by

  1. Effect of basalt fibers on fracture energy and mechanical properties of HSC vol.17, pp.4, 2015, https://doi.org/10.12989/cac.2016.17.4.553
  2. A review: role of interfacial adhesion between carbon blacks and elastomeric materials vol.18, pp.None, 2015, https://doi.org/10.5714/cl.2016.18.001
  3. Structure and adhesive properties of the RFL‐coated continuous basalt fiber cord/rubber interface vol.134, pp.1, 2017, https://doi.org/10.1002/app.44353
  4. Delamination fracture toughness of UHMWPE fibers/polyurethane laminates interleaved with carbon nanotube‐reinforced polyurethane films vol.28, pp.5, 2017, https://doi.org/10.1002/pat.3848
  5. Silane-Treated Basalt Fiber–Reinforced Poly(butylene succinate) Biocomposites: Interfacial Crystallization and Tensile Properties vol.9, pp.8, 2017, https://doi.org/10.3390/polym9080351
  6. Strength of basalt fibers influenced by thermal and chemical treatments vol.47, pp.5, 2015, https://doi.org/10.1177/1528083716674905
  7. Ozonization of SWCNTs on thermal/mechanical properties of basalt fiber-reinforced composites vol.31, pp.5, 2019, https://doi.org/10.12989/scs.2019.31.5.517
  8. Comparison between different non-destructive techniques methods to detect and characterize impact damage on composite laminates vol.54, pp.5, 2015, https://doi.org/10.1177/0021998319864411
  9. Degradation of basalt fiber-reinforced polymer bars in seawater and sea sand concrete environment vol.12, pp.3, 2015, https://doi.org/10.1177/1687814020912888
  10. Enhancing the Mechanical Properties of Glass-Ionomer Dental Cements: A Review vol.13, pp.11, 2020, https://doi.org/10.3390/ma13112510
  11. Effect of Basalt Fibers for Reinforcing Resin-Based Brake Composites vol.10, pp.6, 2020, https://doi.org/10.3390/min10060490
  12. Tough, highly stretchable and self-healing poly(acrylic acid) hydrogels reinforced by functionalized basalt fibers vol.7, pp.6, 2015, https://doi.org/10.1088/2053-1591/ab9857
  13. Enhancing Mechanical Properties of Glass Ionomer Cements with Basalt Fibers vol.12, pp.8, 2015, https://doi.org/10.1007/s12633-019-00312-4
  14. Multiple kerf quality optimization in laser cutting of BFRP composite using grey relational based genetic algorithm vol.48, pp.3, 2015, https://doi.org/10.5937/fme2003636g
  15. Effect of Graphitic Nanofibers on Interfacial Adhesion and Fracture Toughness of Carbon Fibers-reinforced Epoxy Composites vol.34, pp.2, 2015, https://doi.org/10.7234/composres.2021.34.2.082
  16. Investigation of Mechanical Properties for Basalt Fiber/Epoxy Resin Composites Modified with La vol.11, pp.6, 2015, https://doi.org/10.3390/coatings11060666
  17. Highly advanced phthalonitrile composites from epoxy‐ended hyperbranched poly(trimellitic anhydride ethylene glycol) ester grafted basalt fibers vol.42, pp.8, 2021, https://doi.org/10.1002/pc.26100
  18. Effects of Basalt and Carbon Fillers on Fire Hazard, Thermal, and Mechanical Properties of EPDM Rubber Composites vol.14, pp.18, 2015, https://doi.org/10.3390/ma14185245
  19. Modification Mechanism and Rheological Properties of Emulsified Asphalt Evaporative Residues Reinforced by Coupling-Modified Fiber vol.14, pp.23, 2015, https://doi.org/10.3390/ma14237363