DOI QR코드

DOI QR Code

Dependence of Total and Carbonaceous Aerosol Concentrations on Transport Pathways in Seoul, Korea

공기 궤 유입경로에 따른 한반도 서울 상공의 전체 및 유기 에어로졸 농도 변화 분석

  • Jeong, Ukkeo (Global Environment Laboratory/Department of Atmospheric Science, Yonsei University) ;
  • Kim, Jhoon (Global Environment Laboratory/Department of Atmospheric Science, Yonsei University) ;
  • Kim, Young J. (Department of Environmental Science & Engineering, Gwangju Institute of Science & Technology (GIST)) ;
  • Jung, Jinsang (Korean Research Institute of Standards and Science)
  • 정욱교 (연세대학교 지구환경연구소/대기과학과) ;
  • 김준 (연세대학교 지구환경연구소/대기과학과) ;
  • 김영준 (광주과학기술원 환경공학과) ;
  • 정진상 (한국표준과학원 대기환경표준센터)
  • Received : 2015.01.15
  • Accepted : 2015.02.25
  • Published : 2015.03.31

Abstract

Recently increased anthropogenic aerosols change the radiative energy balance and affect human life. The management of air quality requires monitoring both the local emissions and transported pollutants. In order to estimate the quantitative contribution of long-range transport from remote sources on aerosol concentrations in Seoul, the airmasses were classified into five types with respect to their pathways. When airmass came from west over strong emission regions in China, high concentrations of $PM_{10}$, $PM_{2.5}$, black carbon (BC), organic carbon (OC), and elemental carbon (EC) were found, even higher than those for the stagnated airmass. High OC concentrations were found when airmass came from north while BC, EC, and $PM_{2.5}$ concentrations were lower than those of the stagnated airmasses. During dust events, the $PM_{2.5}$ and $PM_{10}$ concentrations increased significantly while carbonaceous aerosol concentrations did not increased. The temporal variations of aerosol concentrations in Seoul were affected by the seasonal variations of airmass pathways. The high $PM_{2.5}$ concentrations over $100{\mu}g\;m^{-3}$ appeared most frequently when the airmasses came from west.

Keywords

References

  1. Birch, M. E., and R. A. Cary, 1996: Elemental carbonbased method for monitoring occupational exposures to particulate diesel exhaust. Aerosol Sci. Technol., 25, 221-241. https://doi.org/10.1080/02786829608965393
  2. Cheng, Y. H., 2008: Comparison of the TSI model 8520 and Grimm Series 1.108 portable aerosol instruments used to monitor particulate matter in an iron foundry. J. Occup. Environ. Hyg., 5, 157-168. https://doi.org/10.1080/15459620701860867
  3. Cheng, Y. H., and Y. L. Lin, 2010: Measurement of particle mass concentrations and size distributions in an underground station. Aerosol Air Qual Res., 10, 22-29.
  4. Hansen, A. D. A., H. Rosen, and T. Novakov, 1984: The aethalometer - an instrument for the real-time measurement of optical-absorption by aerosol-particles. Sci. Total Environ., 36, 191-196. https://doi.org/10.1016/0048-9697(84)90265-1
  5. He, Z., Y. J. Kim, K. O. Ogunjobi, and C. S. Hong, 2003: Characteristics of PM2.5 species and long-range transport of air masses at Taean background station, South Korea. Atmos. Environ., 37, 219-230. https://doi.org/10.1016/S1352-2310(02)00834-8
  6. Heo, J. B., P. K. Hopke, and S. M. Yi, 2009: Source apportionment of PM2.5 in Seoul, Korea. Atmos. Chem. Phys., 9, 4957-4971. https://doi.org/10.5194/acp-9-4957-2009
  7. Hwang, I., and P. K. Hopke, 2007: Estimation of source apportionment and potential source locations Of PM2.5 at a west coastal IMPROVE site. Atmos. Environ., 41, 506-518. https://doi.org/10.1016/j.atmosenv.2006.08.043
  8. Jeong, C. H., D. W. Lee, E. Kim, and P. K. Hopke, 2004: Measurement of real-time PM2.5 mass, sulfate, and carbonaceous aerosols at the multiple monitoring sites. Atmos. Environ., 38, 5247-5256. https://doi.org/10.1016/j.atmosenv.2003.12.046
  9. Jeong, J. I., R. J. Park, J. H. Woo, Y. J. Han, and S. M. Yi, 2011a: Source contributions to carbonaceous aerosol concentrations in Korea. Atmos. Environ., 45, 1116-1125. https://doi.org/10.1016/j.atmosenv.2010.11.031
  10. Jeong, U., H. Lee, J. Kim, W. Kim, H. Hong, and C. K. Song, 2013: Determination of the inter-annual and spatial characteristics of the contribution of longrange transport to SO2 levels in Seoul between 2001 and 2010 based on conditional potential source contribution function (CPSCF). Atmos. Environ., 70, 307-317. https://doi.org/10.1016/j.atmosenv.2013.01.009
  11. Jeong, U., J. Kim, H. Lee, J. Jung, Y. J. Kim, C. H. Song, and J. H. Koo, 2011b. Estimation of the contributions of long range transported aerosol in East Asia to carbonaceous aerosol and PM concentrations in Seoul, Korea using highly time resolved measurements: a PSCF model approach. J. Environ. Monitor., 13, 1905-1918. https://doi.org/10.1039/c0em00659a
  12. Kim, Y. J., M. J. Kim, K. H. Lee, and S. S. Park, 2006: Investigation of carbon pollution episodes using semicontinuous instrument in Incheon, Korea. Atmos. Environ., 40, 4064-4075. https://doi.org/10.1016/j.atmosenv.2006.03.028
  13. Moy, L. A., R. R. Dickerson, and W. F. Ryan, 1994: Relationship between back trajectories and tropospheric trace gas concentrations in rural Virginia. Atmos. Environ., 28, 2789-2800. https://doi.org/10.1016/1352-2310(94)90082-5
  14. Polidori, A., B. J. Turpin, H. J. Lim, J. C. Cabada, R. Subramanian, S. N. Pandis, and A. L. Robinson, 2006: Local and regional secondary organic aerosol: Insights from a year of semi-continuous carbon measurements at Pittsburgh. Aerosol Sci. Technol., 40, 861-872. https://doi.org/10.1080/02786820600754649
  15. Pope, C. A., R. T. Burnett, M. J. Thun, E. E. Calle, D. Krewski, K. Ito, and G. D. Thurston, 2002: Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. J. Amer. Med. Assoc., 287, 1132-1141. https://doi.org/10.1001/jama.287.9.1132
  16. Ramanathan, V., P. J. Crutzen, J. T. Kiehl, and D. Rosenfeld, 2001: Atmosphere - Aerosols, climate, and the hydrological cycle. Science, 294, 2119-2124. https://doi.org/10.1126/science.1064034
  17. Schmid, O., P. Artaxo, W. P. Arnott, D. Chand, L. V. Gatti, G. P. Frank, A. Hoffer, M. Schnaiter, and M O. Andreae, 2006: Spectral light absorption by ambient aerosols influenced by biomass burning in the Amazon Basin. I: Comparison and field calibration of absorption measurement techniques. Atmos. Chem. Phys., 6, 3443-3462. https://doi.org/10.5194/acp-6-3443-2006
  18. Seinfeld, J. H., and S. N. Pandis, 2006: Atmospheric chemistry and physics from air pollution to climate change. Wiley/interscience, New York.
  19. Stohl, A., 1998. Computation, accuracy and applications of trajectories - A review and bibliography. Atmos. Environ., 32, 947-966. https://doi.org/10.1016/S1352-2310(97)00457-3
  20. Wang, J., and S. A. Christopher, 2003: Intercomparison between satellite-derived aerosol optical thickness and PM2.5 mass: Implications for air quality studies. Geophys. Res. Lett., 30.
  21. Watson, J. G., 2002: Visibility: Science and regulation. J. Air Waste Manage., 52, 628-713. https://doi.org/10.1080/10473289.2002.10470813
  22. Weingartner, E., H. Saathoff, M. Schnaiter, N. Streit, B. Bitnar, and U. Baltensperger, 2003: Absorption of light by soot particles: determination of the absorption coefficient by means of aethalometers. J. Aerosol Sci., 34, 1445-1463. https://doi.org/10.1016/S0021-8502(03)00359-8
  23. HYSPLIT4.8 (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model, 2008: NOAA Air Resources Laboratory, Silver Spring, MD, http://www.arl.noaa.gov/ready/hysplit4.html.