DOI QR코드

DOI QR Code

A Study of the WPT Module Using Inductive Coupling for the Convergence Applications

융합형 어플리케이션을 위한 자기유도 방식의 무선전력전송 모듈설계에 대한 연구

  • Jeong, Byeong-Ho (Department of Biomedical Engineering, Nambu University) ;
  • Park, Ju-Hoon (Department of Biomedical Engineering, Nambu University) ;
  • Kang, Bo-An (Department of Biomedical Engineering, Nambu University)
  • Received : 2015.02.27
  • Accepted : 2015.04.20
  • Published : 2015.04.30

Abstract

Inductive Power Transfer (IPT) systems have successfully been developed and used to replace traditional conductive power transfer systems where physical connection is either inconvenient or impossible, such as biomedical implants, undersea vehicles, and contactless battery chargers of robots, for providing power to movable or detachable loads. Inductive Coupling uses magnetic fields to transfer power. There is a primary coil, which generates a magnetic field. Then there is another secondary coil which is composed of a capacitor and a coil, the capacitor creates a circuit with the primary and secondary coils. This paper discusses design method and several implementation alternatives for wireless energy transmission systems. It presents realization examples for these alternatives. Wireless energy transmission is investigated in numerous convergence applications due to its simplicity and advantages.

자기유도형 전력전송시스템은 의생명 임플란트, 해저 수송, 그리고 로봇의 무접촉 배터리충전 등에 대한 이동형 및 분리형 부하에 전력을 공급하는 물리적 접촉이 요구되는 기존의 방식을 대체하여 성공적으로 개발이 진행된 시스템으로 알려져 있다. 자기유도결합은 자기유도방식을 이용하여 전력을 전송하는 방식으로 1차측 코일(송전코일)에서 발생되는 자기장을 2차측코일에 전송하는 원리이다. 송전측 코일에서 발생된 자기장을 커패시터와 코일로 이루어진 2차측 코일(수전코일)로 구성된 리시버회로에 전송하는 구조로 송전부와 수전부 코일을 갖는 회로로 구성된다. 본 논문에서는 자기유도결합을 적용한 무선전력전송시스템에 대한 수전측 토폴로지 설계 및 적용방법에 대해 연구하였다. 적용된 무선 전력전송방식은 적용의 편리성과 폭넓은 어플리케이션으로 인해 다양한 융합형 응용장치의 적용이 가능하다.

Keywords

References

  1. U.K. Madawala D.J. Thrimawithana "Current sourced bi-directional inductive power transfer system", IET Power Electron., Vol. 4, Iss. 4, pp. 471-80, 2011. https://doi.org/10.1049/iet-pel.2010.0145
  2. Takehiro Imura, Yoichi Hori, "IEEE Maximizing Air Gap and Efficiency of Magnetic Resonant Coupling for Wireless Power Transfer Using Equivalent Circuit and Neumann Formula", IEEE Transactions on Industrial Electronics, Vol. 58, No. 10, October 2011.
  3. Dukju Ahn and Songcheol Hong, "A Study on Magnetic Field Repeater in Wireless Power Transfer", IEEE Transactions on Industrial Electronics, Vol. 60, No. 1, 2013.
  4. Udaya K. Madawala, Duleepa J. Thrimawithana, "A Ring Inductive Power Transfer System", IEEE International Conference on Industrial Technology (ICIT), 2010.
  5. Byeong-Ho Jeong, Kang-Yeon Lee, Nam-In Chung, "digital PID controller design for the heat and cool injection mold system", The 20th International Conference on Electrical Engineering, pp.15-19, 2014.
  6. Nausheen Bilal, Aisha Jilani, Hamna Hamid, Ayesha Inayat, Sana Naeem, Nimra, "Circuit-Model Based Analysis of Wireless Energy Transfer System Using Inductive Coupling", Journal of Emerging Trends in Computing and Information Sciences, Vol. 5, No. 10, 2014.
  7. Pratik Raval, Dariusz Kacprzak, Aiguo P. Hu, "A Wireless Power Transfer System for Low Power Electronics Charging Applications", 6th IEEE Conference on Industrial Electronics and Applications. 2011.
  8. Seung-Hwan Lee, Robert D. Lorenz, "Development and Validation of Model for 95%- Efficiency 220-W Wireless Power Transfer Over a 30-cm Air Gap", Transactions on Industry Applications", Vol. 47, No. 6, 2011.
  9. M. Fareq, M. Fitra, M. Irwanto, Syafruddin. HS, N. Gomesh, Farrah. S, M. Rozailan, "Solar Wireless Power Transfer Using Inductive Coupling for Mobile Phone Charger", 2014 IEEE 8th International Power Engineering and Optimization Conference (PEOCO2014), Langkawi, The Jewel of Kedah, Malaysia. pp. 24-25 March, 2014.
  10. Leyh, G.E. , Kennan, M.D., "Efficient Wireless Transmission of Power Using Resonators with Coupled Electric Fields" 40th North American Power Symposium, 2008.
  11. J.T. Boys, G.A. Covic, and A.W. Green, "Stability and control of inductively coupled power transfer systems," IEE Proceedings of Electric Power Applications, Vol. 147, No. 1, pp. 37-43, 2000. https://doi.org/10.1049/ip-epa:20000017
  12. J.-U.W. Hsu, A.P. Hu, A. Swain, X. Dai, and Y. Sun, "A new contactless power pick-up with continuous variable inductor control using magnetic amplifier," in PowerCon 2006 International Conference on Power System Technology. 2006.
  13. 'Wireless Power: Wireless charging and transmission for mobile devices, consumer electronics, electric vehicles, industrial markets, and military applications, 'Pike Research, 2010.
  14. Proceedings of IEEE MTT-S international microwave workshop series (IMWPS) on innovative wireless power transmission: Technologies, systems, and applications (IMWS-IWPT), Kyoto, Japan, 2011.
  15. Hansu Shin, Jin-Kyu Byun, "Efficiency and EMF Safety Analysis of Wireless Power Transfer System Using Standard Human Model", Journal of the Korean Institute of IIIuminating and Electrical Installation Engineers Vol. 27, No. 11, pp. 96-103, 2013. https://doi.org/10.5207/JIEIE.2013.27.11.096
  16. J.-U.W. Hsu, A.P. Hu, and A. Swain, "A wireless power pick-up based on directional tuning control of magnetic amplifier," in IEEE Transactions on Industrial Electronics, Vol. 56, No. 7, pp. 2771-2781, 2009. https://doi.org/10.1109/TIE.2009.2020081