DOI QR코드

DOI QR Code

Improvement of Pedestrian Convenience and Mobility by Applying the Walking Guidance System in Subway Stations

지하철 역사내 동선 분리 시스템을 활용한 보행편의 및 이동성 증진

  • Lee, Joo-Yong (Department of Urban Engineering, Chung-Ang University) ;
  • Kim, Taewan (Department of Urban Engineering, Chung-Ang University) ;
  • You, So-Young (Transport Systems Research Team, Korea Railroad Research Institute)
  • 이주용 (중앙대학교 도시공학과) ;
  • 김태완 (중앙대학교 도시공학과) ;
  • 유소영 (한국철도기술연구원 교통체계분석연구팀)
  • Received : 2014.12.01
  • Accepted : 2015.03.24
  • Published : 2015.04.30

Abstract

The congestion of pedestrians impedes the utilization efficiency of a subway station. Conflicts among pedestrians due to unseparated pedestrian flows not only increase the impedance of pedestrian mobility but also negatively affect on pedestrian safety. This paper analyzes the travel characteristics of bi-directional pedestrian flow based on microscopic movements, and evaluates the operation efficiency on separating the traffic line. The subway station was simulated in a 2-D grid structure by applying Discrete Element Method, and the movement is organized in each cell of the grid. As a result, the model explicates that separating the traffic line and encouraging the 'Keep right rule' would be mostly effective for the conflicting flows. Therefore, applying the 'Walking Guidance System' would be efficient to improve the pedestrian convenience and mobility.

지하철 역사 공간 내 보행교통류의 혼잡 상황은 역사의 이용효율을 저해시킨다. 특히 방향별 동선의 미분리로 인한 보행자간 상충은 보행자의 이동저항을 증가시키며 통행시간과 안전사고에 부정적인 영향을 끼치게 된다. 본 연구에서는 미시적 움직임에 기반한 양방향 보행교통류의 통행 특성을 분석하였으며, 동선 분리로 인한 운영상의 효과를 분석하는 모형을 개발하였다. 이산요소법에 따라 역사 공간을 2차원 grid 구조로 해석하였으며, 각 grid에 존재하는 cell 별로 보행자의 움직임이 이루어진다고 보았다. 그 결과 양방향 보행교통류가 상충하는 상황에서는 동선을 분리시키고, 우측통행을 유도하여 보행자들의 진행 방향을 정돈시키는 경우가 가장 효율이 좋은 것으로 분석되었다. 이에, 동선 분리 시스템을 적용하여 보행편의 및 이동성을 증진시키기 위한 시사점을 제시하고자 한다.

Keywords

References

  1. Burstedde C., Klauck K., Schadschneider A., Zittartz J. (2001), Simulation of Pedestrian Dynamics Using a Two-dimensional Cellular Automaton, Physica A: Statistical Mechanics and its Applications, 295(3-4), 507-525. https://doi.org/10.1016/S0378-4371(01)00141-8
  2. Helbing D., Molnar P. (1995), Social Force Model for Pedestrian Dynamics, Physical review E, 51(5), 4282-4286. https://doi.org/10.1103/PhysRevE.51.4282
  3. Kang T. S., Lee Y. I. (2012), The Modelling of the Pedestrian Moving Algorithm of P-SIM, The 60th Conference of Korean Society of Transportation, Korean Society of Transportation, 209-214.
  4. Lee J., Heo M. G., Jung J. H. (2009), The Rotated Hexagonal Lattice Model For Pedestrian Flow, J. Korean Soc. Transp., 27(1), Korean Society of Transportation, 169-177.
  5. Muramatsu M., Nagatani T. (2000), Jamming Transition in Two-dimensional Pedestrian Traffic, Physica A: Statistical Mechanics and its Applications, 275(1-2), 281-291. https://doi.org/10.1016/S0378-4371(99)00447-1
  6. Nam S. W., Kwon H. B. (2006), Analysis of Pedestrian Flow Characteristics in Subway Station, The Conference of Korean Society of Mechanical Engineers, 2006(6), 922-927.
  7. Samardy S., Haron F., Taib A. Z. (2010), Simulating Crowd Movements Using Fine Grid Cellular Automata, International Conference on Computer Modelling and Simulations, 428-433.
  8. Seitz M. J., Koster G. (2012), Natural Discretization of Pedestrian Movement in Continuous Space, Physical review E, 86(4), 046108. https://doi.org/10.1103/PhysRevE.86.046108
  9. Zheng Y., Chen J., Wei J. (2012), Modeling of Pedestrian Evacuation Based on the Particle Swarm Optimization Algorithm, Physica A: Statistical Mechanics and its Applications, 391(17), 4225-4233. https://doi.org/10.1016/j.physa.2012.03.033

Cited by

  1. An Analysis on Evacuation Scenario at Metro-stations using Pedestrian Movement-based Simulation Model vol.15, pp.2, 2016, https://doi.org/10.12815/kits.2016.15.2.036
  2. The Influence of Users’ Spatial Familiarity on Their Emotional Perception of Space and Wayfinding Movement Patterns vol.21, pp.8, 2015, https://doi.org/10.3390/s21082583