A Study on Robotic Arm Control Method Based on Upper Extremity Electromyogram

상지 근전도 기반의 로봇 팔 제어방법에 대한 연구

  • 강신윤 (한국산업기술대학교 신기술융합학과) ;
  • 엄수홍 (한국산업기술대학교 정보통신공학과) ;
  • 장문석 (한국산업기술대학교 전자공학과) ;
  • 이응혁 (한국산업기술대학교 전자공학과)
  • Received : 2015.02.16
  • Accepted : 2015.02.28
  • Published : 2015.02.28

Abstract

In this paper, we propose the robotic arm control method based on upper extremity electromyogram for lower upper extremity amputation patient. The muscle activity of the forearm flexor, forearm extensor and biceps was analyzed to utilize distribution of muscle activity to a specific position in order to the control input. This control input is converted into a control command for controlling the robotic arm through the algorithm. For the experiment and verify the proposed method, 5DoF robotic arm control system was constructed with 1 channel EMG Module and PC applications through the interworking with each module to perform a three-channel EMG analysis. For accuracy and performance evaluation of control, Experiments were performed with robotic arms moving objects. As a result of experiments which after training for 10 hours by middle 20's man, Validity of the proposed method was evaluated based an average accuracy of 92.5%.

본 논문에서는 상지하부 절단환자를 대상으로 하는 상지 근전도 기반의 로봇 팔 제어방법을 제안한다. 로봇 팔의 제어를 위해 전완 신전근과 전완 굴곡근 그리고 이두근의 근활성도를 분석하여 특정 자세에 따른 근활성도 분포를 제어입력으로 활용하였다. 이러한 제어 입력은 알고리즘을 통하여 로봇 팔을 제어하기 위한 제어명령으로 변환된다. 제안하는 방법에 대한 실험 및 검증을 위하여 1채널 근전도 착용형 모듈과 각각의 모듈과의 연동을 통하여 3채널 근전도 분석을 수행하는 PC 어플리케이션 기반의 5자유도 로봇 팔 제어시스템을 구성하였다. 제어의 정확도 및 성능평가를 위해 로봇 팔을 통한 물건 옮기기 실험을 수행하였으며, 20대 중반의 남성을 대상으로 하여 10시간의 숙달훈련 후 실험을 수행한 결과 실험결과의 평균 정확도가 92.5%로서 제안하는 방법은 유효한 것으로 평가하였다.

Keywords

References

  1. 한국장애인복지진흥회 "2007년 한.독 국제장애인보조기구 심포지엄" 2007
  2. 이안재, 복득규 "SERI 경제포커스" 삼성경제연구소, 2008
  3. B. Hudgins, P. Parker, and R. N. Scott, "A new strategy for multifunction myoelectric control", IEEE Transactions on Biomedical Engineering, vol. 40, no. 1, pp. 82-94, 1993. https://doi.org/10.1109/10.204774
  4. K. Englehart K and B. Hudgins, "A robust, real-time control scheme for multifunction myoelectric control", IEEE Transactions on Biomedical Engineering, vol. 50, no. 7, pp. 848-854, 2003. https://doi.org/10.1109/TBME.2003.813539
  5. R. Merletti and P. A. Parker, "Electromyography Physiology, Engineering, and Noninvasive Applications", IEEE Press Series in Biomedical Engineering, John Wiley and Sons Inc, Hoboken, New Jersey, 2004.
  6. S.H Lee, W.Y Lee, J.S Kong and E.H Lee, "Gesture-based interface for the mobile use of the upper extremity disabilities", 12th Rehabilitation Engineering & Assistive Technology Society of Korea, Jeonju, Korea, Nov, 2012, pp.283-285.
  7. K.J. Kang,Webzine prism IT&Universal, 한국장애인인권포럼, 2011, 통권 제17호.
  8. Levi J. Hargrove, Douglas G. Smith, and Todd A. Kuiken "Robotic Leg Control with EMG Decoding in an Amputee with Nerve Transfers" The NEW ENGLAND JOURNAL of MEDICINE, Oct 2013.
  9. K.S Kim, Y.H Han, W.B Jung, Y,H Lee, J.H Kang, H.H Choi and C.W Mun, "Portable Biosignal Measurement System Technologies", 10th Korea Game Society, Korea, Oct, 2010, pp.65-73.
  10. Sebastian Amsuss, Peter M. Goebel, Ning Jiang, Bernhard Graimann, Liliana Paredes and Dario Farina "Self-Correcting Pattern Recognition System of Surface EMG Signals for Upper Limb Prosthesis Control" IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 61, NO. 4, APRIL 2014
  11. Rami N. Khushaba "Correlation Analysis of Electromyogram(EMG) Signals for Multi-User Myoelectric Interfaces" IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL.11, NO. 1, JANUARY 2014
  12. Zhibin Song, Zhenyu Wang, Shuxiang Guo, Baofeng Gao "Study on Resistance Training for Upper-Limb Rehabilitation Using an Exoskeleton Device" Proceedings of 2013 IEEE International Conference on Mechatronics and Automation, Aug 2013