DOI QR코드

DOI QR Code

Numerical Analysis of Detonation of Kerosene-Air Mixture and Solid Structure

케로신-공기 혼합물의 데토네이션 모델과 구조체 모델을 통한 금속관의 수치해석

  • Lee, Younghun (Department of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Gwak, Min-Cheol (Department of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Yoh, Jai-Ick (Department of Mechanical and Aerospace Engineering, Seoul National University)
  • Received : 2014.12.24
  • Accepted : 2015.03.13
  • Published : 2015.04.01

Abstract

This paper presents a numerical investigation on detonation of a kerosene-air mixture in the copper tube and the structural response associated with combustion instability in liquid rocket engine. A single step Arrehnius rate law and Johnson-Cook strength model are used to describe the chemical reaction of kerosene-air mixture detonation and the plastic deformation of the copper tube. The changes of flow field and tube stress which are induced by plastic deformation, are investigated on the different tube thicknesses and nozzle configurations.

본 연구는 케로신 연료를 사용하는 액체로켓엔진에서 발생할 수 있는 연소불안정으로 인하여 파괴될 수 있는 연소기의 손상을 수치적으로 모사하는 해석 모델의 기초연구이다. 연소불안정으로부터 야기 될 수 있는 케로신의 데토네이션은 1단계 아레니우스 식의 화학 반응식을 이용하였고, 구조체는 Johnson-Cook 강성모델을 활용하여 데토네이션으로 인한 금속관의 소성 변형을 모델링하였다. 금속관의 소성 변형에 의해 변화하는 유동장과 구조체의 스트레스를 노즐 형상과 관의 두께변화에 따라 해석하였다.

Keywords

References

  1. Harrje, D.J. and Reardon, F.H., "Liquid Propellant Rocket Instability," NASA SP-194, 1972.
  2. Ducruix, S., Schuller, T., Durox, D. and Candel, S., "Combustion Dynamics and Instabilities: Elementary Coupling and Driving Mechanisms," Journal of Propulsion and Power, Vol. 19, No. 5, pp. 722-734, 2003. https://doi.org/10.2514/2.6182
  3. Fuhua, M., Choi, J.Y. and Yang, V., "Thrust Chamber Dynamics and Propulsive Performance of Single-Tube Pulse Detonation Engines," Journal of Propulsion and Power, Vol. 21, No. 3, pp. 512-526, 2005. https://doi.org/10.2514/1.7393
  4. Huang, Y., Tang, H., Li, J. and Zhang, C., "Studies of DDT Enhancement Approaches for Kerosene-Fueled Small-scale Pulse Detonation Engines Applications," Shock waves, Vol. 22, No. 1, pp. 615-625, 2012. https://doi.org/10.1007/s00193-012-0396-5
  5. Kindracki, J., "Analysis of the Experimental Results of the Initiation of Detonation in Short Tubes with Kerosene-Oxidizer Mixtures," Journal of Loss Prevention in the Process Industries, Vol. 26, No. 1, pp. 1515-1523, 2013. https://doi.org/10.1016/j.jlp.2013.09.003
  6. Gamezo, V.N., Desbordes, D. and Oran, E.S., "Two-Dimensional Reactive Flow Dynamics in Cellular Detonation Waves," Shock Waves, Vol. 9, No. 1, pp. 11-17, 1999. https://doi.org/10.1007/s001930050134
  7. Kim, K. and Yoh, J.J., "A Particle Level-se t Based Eulerian Method for Multi-Material Detonation Simulation of High Explosive and Metal Confinements," Proceedings of the Combustion Institute, Vol. 34, No. 1, pp. 2025-2033, 2013.
  8. Shen H., Wang G., Liu K.X. and Zhang D.L., "Numerical Simulation of Liquid-Fueled Detonations by an Eulerian-Lagrangian Model," International Journal of Nonlinear Science and Numerical Simulation, Vol. 13, No. 1, pp. 177-188, 2012.
  9. Beltman, W.M. and Shepherd, J.E., "Linear Elastic Response of Tubes to Internal Detonation Loading," Journal of Sound and Vibration, Vol. 252, Issue 4, pp. 617-655, 2002. https://doi.org/10.1006/jsvi.2001.4039