DOI QR코드

DOI QR Code

Risk Assessment of 2011 Debris Flow Hazard Area in Yongin City

2011년 용인시 토석류 피해지역에 대한 리스크 평가

  • Choi, Gou-moon (Department of Civil Engineering, Gangneung-Wonju National University) ;
  • Lee, Seung Woo (Department of Civil Engineering, Gangneung-Wonju National University) ;
  • Yune, Chan-Young (Department of Civil Engineering, Gangneung-Wonju National University)
  • 최규문 (강릉원주대학교 토목공학과) ;
  • 이승우 (강릉원주대학교 토목공학과) ;
  • 윤찬영 (강릉원주대학교 토목공학과)
  • Received : 2015.02.04
  • Accepted : 2015.03.20
  • Published : 2015.04.30

Abstract

In this study, risk assessment for the debris-flow hazard which caused casualties and property loss in the area of Neungwon-ri, Yongin in July, 2011 was performed. Considering the return period of rainfall, debris flow volume was estimated. Dynamics of debris flow and impact range was also simulated by numerical approach. Based on the result of numerical analysis, impact pressure and vulnerability of building was calculated according to flow depth and velocity of debris flow. Finally risk assessment was performed based on the economic value of each building. Risk assessment showed that the longer the return period induced the high impact pressure and vulnerability regardless of a structure type. In addition, under a similar hazard situation, non-concrete frame building was more vulnerable than the reinforced concrete frame building.

본 연구에서는 2011년 7월 토석류로 인해 인명 및 재산피해가 발생한 용인시 능원리 지역의 재해이력을 검토하여, 대상지역에서 토석류 재해에 대한 리스크를 분석하였다. 토석류 재해 발생지점에서 강우 재현주기를 고려하여 토석량을 산정하였으며, 수치적인 방법을 이용하여 토석류 거동을 모사하고 토석류 영향범위를 산정하였다. 또한 수치적 방법으로 평가된 토석류의 높이와 속도를 바탕으로 충격압 및 취약성을 계산한 후, 건물의 경제적 가치를 고려하여 리스크 평가를 수행하였다. 리스크 평가결과, 재현주기에 따른 충격압과 취약성은 건물의 골조형식과 관계없이 재현주기가 길어질수록 커졌고, 비 콘크리트 골조의 건물이 보강 콘크리트 골조의 건물보다 취약한 것으로 나타났다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. Chae, B.G., Liu, K.F., and Kim, M.I. (2010) A Case Study for Simulation of a Debris Flow with DEBRIS-2D at Inje, Korea, The Journal of Engineering Geology, Vol. 20, pp. 231-242.
  2. Chen, Y.C., Chang, K.T., Chiu, Y.J., Lau, S.M., and Lee, H.Y. (2013) Quantifying Rainfall Controls on Catchment-Scale Landslide Erosion in Taiwan, Earth Surface Processes and Landforms, Vol. 38, pp. 372-382. https://doi.org/10.1002/esp.3284
  3. Choi, W.I., Lee, S.G., Lee, B.K., and Jang, S.J. (2012) A Study of Vulnerability of Structure by Debris Flow, Korean Society of Hazard Mitigation, Vol. 12, pp. 141-146.
  4. Dai, F.C., Lee, C.F., and Ngai, Y.Y. (2002) Landslide Risk Assessment Management : An Overview, Engineering Geology, Vol. 64, pp. 65-87. https://doi.org/10.1016/S0013-7952(01)00093-X
  5. Geertsema, M., Hungr, O., Schwab, J.W., and Evans, S.G. (2006) A Large Rockslide-Debris Avalanche in Cohesive Soil at Pink Mountain, Northeastern British Columbia, Canada, Engineering Geology, Vol. 83, pp. 64-75. https://doi.org/10.1016/j.enggeo.2005.06.025
  6. Haugen, E.D. and Kaynia, A.M. (2008) Vulnerability of Structures Impacted by Debris Flow, Landslides and Engineered Slopes - Chen et al. (eds), Taylor & Francis Group, London, pp. 381-387.
  7. Hu, K.H., Cui, P., and Zhang, J.Q. (2012) Characteristics of Damage to Buildings by Debris Flows on 7 August 2010 in Zhouqu, Western China, Nat. Hazards Earth Syst. Sci., Vol. 12, pp. 2209-2217. https://doi.org/10.5194/nhess-12-2209-2012
  8. Hungr, O. (1995) A Model for the Runout Analysis of Rapid Flow Slides, Debris Flows and Avalanches, Can. Geotech. J., Vol. 32, pp. 610-623. https://doi.org/10.1139/t95-063
  9. Hwang, H.G., Lee, S.W., Kim, G.H., Choi, B.K., and Yune, C.Y. (2013) Analysis of Slope Hazard - Triggering Rainfall and Geological Characteristics in 2011 and 2012, Korean Society of Hazard Mitigation, Vol. 13, pp. 179-189. https://doi.org/10.9798/KOSHAM.2013.13.6.179
  10. Jakob, M. (2005) A Size Classification for Debris Flows, Engineering Geology, Vol. 79, pp. 151-161. https://doi.org/10.1016/j.enggeo.2005.01.006
  11. Julien, P.Y. and Lan, Y. (1991) Rheology of hyperconcentrations, Journal of Hydaulic Engineering, Vol. 117, pp. 346-353. https://doi.org/10.1061/(ASCE)0733-9429(1991)117:3(346)
  12. Kang, H.S. and Kim, Y.T. (2014) Physical Vulnerability Function of Buildings Impacted by Debris Flow, Korean Society of Hazard Mitigation, Vol. 14, pp. 133-143.
  13. Kim, P.K. (2012) Numerical Modeling for the Detection and Movement of Debris Flow Using Detailed Soil Maps and GIS, Kyungpook National University, Doctor's thesis, pp. 133-142.
  14. Kim, S.E., Paik, J.C., and Kim, K.S. (2013) Run-out Modeling of Debris Flows in Mt. Umyeon Using FLO-2D, Journal of the Korean Society of Civil Engineers, Vol. 33, pp. 965-974. https://doi.org/10.12652/Ksce.2013.33.3.965
  15. Korea expressway corporation (2007) Debris Flow Hazard Mitigation and Countermeasures in Highway.
  16. Korea Forest Research Institute (2012) 2011 Forest Disaster White Paper.
  17. Korea Meteorological Administration, Annual Climatological Report (2004-2013).
  18. Li, J. and Luo, D. (1980) The Formation and Characteristics of Mudflow and Flood in the Mountain Area of the Dachao Torrent and its Prevention, Zeitschrift fr Geomorphologie, Vol. 25, pp. 470-484.
  19. Liu, K.F. and Huang, M.C. (2006) Numerical Simulation of Debris Flow with Application on Hazard Area Mapping, Computational Geosciences, Vol. 10, pp. 221-240. https://doi.org/10.1007/s10596-005-9020-4
  20. Liu, K.F. and Wu, Y.H. (2010) The Assessment of Debris Flow Hazard in Korea using Debris-2D, INTERPRAEVENT 2010 - International Symposium in Pacific Rim In Taipei, Taiwan, pp. 820-827.
  21. Liu, K.F., Wu, Y.H., Chen, Y.C., Chiu, Y.J., and Shih, S.S. (2013) Large-Scale Simulation of Watershed Mass Transport: A Case Study of Tsengwen Reservoir Watershed, Southwest Taiwan, Natural Hazards, Vol. 67, pp. 855-867. https://doi.org/10.1007/s11069-013-0611-4
  22. Luna, B.Q., Blahut, J., Van Westen, C.J., Sterlacchini, S., van Asch, T.W.J., and Akbas, S.O. (2011) The Application of Numerical Debris Flow Modelling for the Generation of Physical Vulnerability Curves, Nat. Hazards Earth Syst. Sci., Vol. 11, pp. 2047-2060. https://doi.org/10.5194/nhess-11-2047-2011
  23. Luna, B.Q., Van Westen, C.J., Blahut, J., Camera, C., Apuani, T., and Sterlacchini, S. (2010) From Deterministic Hazard Modelling to Risk and Loss Estimation, Mountain Risks: Bringing Science to Society. Proceedings of the international Conference, pp. 373-380.
  24. Ministry of Land, Transport and Maritime Affairs (2011) A Study of Improvement and Supplement of Probability Rainfall.
  25. Morgan, G.C., Rawlings, G.E., and Sobkowicz, J.C. (1992) Evaluating total Risk to Communities from large Debris Flows, Proceedings of 1st Canadian Symposium on Geotechnique and Natural Hazards, BiTech Publishers, pp. 225-236.
  26. Ni, H.Y., Zheng, W.M., Tie, Y.B., Su, P.C., Tang, Y.Q., Xu, R.G., Wang, D.W., and Chen, X.Y. (2012) Formation and Characteristics of Post-Earthquake Debris Flow: A Case Study from Wenjia Gully in Mianzhu, Sichuan, SW China, Natural Hazards, Vol. 61, pp. 317-335. https://doi.org/10.1007/s11069-011-9914-5
  27. Rickenmann, D. (1999) Empirical Relationships for Debris Flows, Natural Hazards, Vol. 19, pp. 47-77. https://doi.org/10.1023/A:1008064220727
  28. UN-ISDR, http://www.unisdr.org/we/inform/terminology
  29. Van Westen, C.J., Alkema, D., Damen, M.C.J., Kerle, N., and Kingma, N.C. (2011) Multi-Hazard Risk Assessment : Guide Book, UNU-ITC DGIM, Netherlands.
  30. Wong, H.N. and Ko, F.W.Y. (2005) Landslide Risk Assessment - Application and Practice, GEO Report 195, Geotechnical Engineering Office, Hong Kong.
  31. Yin, K., Chen, L., and Zhang, G. (2007) Regional Landslide Hazard Warning and Risk Assessment, Earth Science Frontiers, Vol. 14, pp. 85-97. https://doi.org/10.1016/S1872-5791(08)60005-6
  32. Zanchetta, G., Sulpizio, R., Pareschi, M.T., Leoni, F.M., and Santacroce, R. (2004) Characteristics of May 5-6, 1998 Volcaniclastic Debris Flows in the Sarno Area (Campania, Southern Italy): Relationships to Structural Damage and Hazard Zonation, Journal of Volcanology and Geothermal Reseach, Vol. 133, pp. 377-393. https://doi.org/10.1016/S0377-0273(03)00409-8
  33. Zezere, J.L., Garcia, R.A.C., Oliveira, S.C., and Reis, E. (2008) Probabilistic Landslide Risk Analysis considering Direct Costs in the Area north of Lisbon (Portugal), Geomorphology, Vol. 94, pp. 467-495. https://doi.org/10.1016/j.geomorph.2006.10.040