DOI QR코드

DOI QR Code

Effect of Medium Molecular Weight Chitosan on Antioxidant Activity of Moringa oleifera

모링가의 항산화 효과에 미치는 중저분자 키토산의 영향

  • Received : 2015.01.28
  • Accepted : 2015.02.25
  • Published : 2015.03.31

Abstract

The aim of this study is to elucidate the antibacterial activity of medium molecular weight chitosan (MMWC) along with keeping antioxidant activity of Moringa oleifera leaves extracts, which has shown the significant antioxidant activity. Antioxidant activity of the extracts as either free or ingredient in edible food was investigated in vitro by radical scavenging assays with 2,2-Diphenyl-1-picrylhydrazyl (DPPH), 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) and 2,4,6-Tris(2-pyridyl)-s-triazine (FRAP). The results showed that extracts has showed high antioxidant activity while added in edible food as like a muk, although when it was added in muk as food additives, its original activity was reduced slightly. In addition, in the presence of MMWC with ranging from 3 to 8-kDa in muk, various improvements including antibacterial effect and stability of structure of muk were observed. Taken together, specified size of chitosan seems to be a good candidate playing a key role to maintain the antioxidant and antibacterial activities in functional foods.

본 연구를 통해 항산화 성분이 뛰어나다고 알려진 모링가잎 또는 추출물을 다이어트 식품소재 개발을 위해 제조한 muk에 첨가하여 완제품으로서의 항산화 [(2,2-Diphenyl-1-picrylhydrazyl (DPPH), ABTS and FRAP)] 활성 측정에 따른 상대활성의 변화를 관찰하고자 하였다. 각각의 제조 muk으로부터 본래 활성이 대략 10-30% 정도 감소되는 것을 확인하였다. 반면, 소량의 중저분자 키토산(CTSN-P, 3-8 kDa)을 함유하는 muk에서는 모링가muk의 항산화 성분 유출이 감소되며, 여러 온도에서 muk의 자체적 균 성장까지 저해하는 효과를 가져온다는 것을 확인하였다. 이로서, 특정 분자 크기의 키토산은 기능성 식품의 안정성과 보존성 향상을 위한 첨가제로서 사용효과가 매우 기대된다 하겠다.

Keywords

Acknowledgement

Supported by : Small Business Administration

References

  1. Candenas, E. and Davies, K. J. A.: Mitochondrial free radical generation, oxidative stress, and aging. Free radical Biol. Med., 2000, 29, 222-230. https://doi.org/10.1016/S0891-5849(00)00317-8
  2. Michiels, C., Raes, M., Toussaint, O. and Remacle, J.: Importance of SE-glutathione peroxidase, catalase, and CU/ZNSOD for cell survival against oxidative stress. Free Radical Biol. Med., 1994, 17, 235-248. https://doi.org/10.1016/0891-5849(94)90079-5
  3. Masella, R., Di Benedetto, R., Var, R., Filesi, C., and Giovannini, C.: Novel mechanisms of natural antioxidant compounds in biological systems: involvement of glutathione and glutathione- related enzymes. J. Nutrit. Biochem., 2005, 16, 577-586. https://doi.org/10.1016/j.jnutbio.2005.05.013
  4. Kim, S. Y., Kim, J. H., Kim, S. K., Oh, M. J., and Jung, M. Y.: Antioxidant activities of selected oriental herb extracts. J. American Oil Chemists' Society, 1994, 71, 633-640. https://doi.org/10.1007/BF02540592
  5. Badejo, A. A., Damilare, A., and Ojuade, T. D.: Processing effects on the antioxidant activities of beverage blends developed from Cyperus esculentus, Hibiscus sabdariffa, and Moringa oleifera extracts. Prev. Nutrit. Food Sci., 2014, 19, 227-233. https://doi.org/10.3746/pnf.2014.19.3.227
  6. Saini, R. K., Shetty, N. P., and Prakash, M.: Effect of dehydration methods on retention of carotenoids, tocopherols, ascorbic acid and antioxidant activity in Moringa oleifera leaves and preparation of a RTE product. J. Food Sci. Technol., 2014, 51, 2176-2182. https://doi.org/10.1007/s13197-014-1264-3
  7. Abdull, R. A. F., Ibrahim, M. D., and Kntayya, S. B.: Health benefits of Moringa oleifera. Asian Pacific J. Cancer Prev., 2014, 15, 8571-8576. https://doi.org/10.7314/APJCP.2014.15.20.8571
  8. Choudhary, M. K., Bodakhe, S. H., and Gupta, S. K.: Assessment of the antiulcer potential of Moringa oleifera root-bark extract in rats. J. Acupunct. Merid. Studies, 2013, 6, 214-220. https://doi.org/10.1016/j.jams.2013.07.003
  9. Dollah, S., Abdulkarim, S. M., Ahmad, S. H., Khoramnia, A., and Ghazali, H. M.: Physicochemical properties and potential food applications of Moringa oleifera seed oil blended with other vegetable oils. J. Oleo Sci., 2014, 63, 811-822. https://doi.org/10.5650/jos.ess13235
  10. Siddhuraju, P. and Becker, K.: Antioxidant properties of various solvent extracts of total phenolic constituents from three different agroclimatic origins of Drumstick tree (Moringa oleifera Lam.) Leaves. J. Agri.Food Chem., 2003, 51, 2144- 2155. https://doi.org/10.1021/jf020444+
  11. No, H. K., Park, N. Y., Lee, S. H., and Samuel, P. M.: Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. Int. J. Food Microbiol., 2002, 74, 65-72. https://doi.org/10.1016/S0168-1605(01)00717-6
  12. Jung, S. H., Hwang, Y. J., Shi, S. Y., Goo, B. G., and Park, J. K.: Antimicrobial activity of medium molecular weight chitosan against Streptococcus mutans. J. Chitin Chitosan, 2013, 18, 75-80.
  13. Gibot, L., Chabaud, S., Bouhout, S., Bolduc, S., Auger, F. A., and Moulin, V. J.: Anticancer properties of chitosan on human melanoma are cell line dependent. Int. J. Biol. Mole., 2015, 72, 370-379.
  14. Gallaher, C. M., Munion, J., Hesslink, R. J., Wise, J., and Gallaher, D. D.: Cholesterol reduction by glucomannan and chitosan is mediated by changes in cholesterol absorption and bile acid and fat excretion in rats. J. Nutrit., 2000, 130, 2753-2759.
  15. Wan Ngah, W. S., Endud, C. S., and Mayanar, R.: Removal of copper(II) ions from aqueous solution onto chitosan and cross-linked chitosan beads. React. Func. Poly., 2002, 5, 181-190.
  16. Wu, F. C., Tseng, R. L., and Juang, R. S.: Kinetic modeling of liquid-phase adsorption of reactive dyes and metal ions on chitosan. Water Res., 2001, 35, 613-618. https://doi.org/10.1016/S0043-1354(00)00307-9
  17. Schmitt, J. and Flemming, H. C.: FTIR-spectroscopy in microbial and material analysis. Int. Biodeter. Biodegrad., 1998, 41, 1-11. https://doi.org/10.1016/S0964-8305(98)80002-4
  18. Sharma, O. P. and Bhat, T. K.: DPPH antioxidant assay revisited. Food Chem., 2009, 113, 1202-1205. https://doi.org/10.1016/j.foodchem.2008.08.008
  19. Benzie, I. F. F. and Strain, J. J.: The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay. Analytical Biochem., 1996, 239, 70-76. https://doi.org/10.1006/abio.1996.0292
  20. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., and Evans, C. R.: Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free radical Biol. Med., 1999, 26, 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  21. Evans, C. A. R., Miller, N. J., and Paganga G.: Structureantioxidant activity relationships of flavonoids and phenolic acids. Free radical Biol. Med., 1996, 20, 933-956. https://doi.org/10.1016/0891-5849(95)02227-9