DOI QR코드

DOI QR Code

Investigation of Transonic and Supersonic Flows over an Open Cavity Mounted on Curved Wall (II) - Unsteady Flow Characteristics -

곡면상에 설치된 열린 공동을 지나는 천음속/초음속 유동에 관한 연구 (II) - 비정상 유동의 특성 -

  • Ye, A Ran (Dept. of Mechanical Engineering, Andong Nat'l Univ.) ;
  • Das, Rarjarshi (Dept. of Mechanical Engineering, Andong Nat'l Univ.) ;
  • Kim, Huey Dong (Dept. of Mechanical Engineering, Andong Nat'l Univ.)
  • Received : 2014.10.08
  • Accepted : 2015.04.07
  • Published : 2015.06.01

Abstract

Investigations into cavity flows have been conducted for noise and vibration problems that arise in cavity systems. Cavity systems have been applied in engineering devices and have undergone rapid development in the aerospace industry. Meanwhile, to the author's best knowledge, the cavity on a curved wall has been seldom studied. The present work is conducted to study the flow physics of a cavity mounted on a curved wall. Numerical analysis is performed to investigate the cavity flow. Two variables of sub- and supersonic cavity flows were considered: the radius of curvature of the curved wall (L/R) and the inlet Mach number. The results show that the uniform vortex generated by the cavity flow on the curved wall stabilize the pressure fluctuation as time passes. As the inlet Mach number increases, the pressure fluctuation amplitude increases. The results obtained from the curved wall are compared with those from a straight wall using Rossiter's formula. The Strouhal number of the curved wall is lower than that of the straight wall. Lower Strouhal numbers have been obtained in the present computational fluid dynamics (CFD) results than in the theoretical results using Rossiter's formula.

공동유동에 관한 연구는 공동시스템에서 발생하는 소음/진동 문제로 인하여 많은 연구가 이루어졌으며, 현제 항공우주 산업의 급속한 발전과 더불어 다양한 공학적 장치에 적용되고 있다. 하지만, 실제 공학적 응용에서 많이 적용되는 곡면 벽상에 설치한 공동유동에 관한 연구에 대해서는 거의 수행되지 않았다. 본 연구에서는 곡면벽상에 설치한 공동유동의 특성을 조사하기 위해 수치계산을 수행하였으며, 곡면의 곡률 반경의 비(L/R) 및 입구 유동의 마하수를 변화시켜, 천음속/초음속 공동유동에서 발생하는 압력진동을 조사하였다. 그 결과 곡면에 부착된 공동유동의 경우 와류의 상호작용으로 인한 압력 교란을 완화시켰으나, 압력 진동의 진폭을 증가시켰으며, 또한 마하수가 증가함에 따라 압력 진동의 진폭이 증가하였다. 주파수 분석 결과, 곡관의 무차원 진동수는 직관에 비해 낮은 값이 측정되었으며, 또한 Rossiter의 실험값에 비해 낮은 값을 가졌다.

Keywords

References

  1. Krishnamurthy, K., 1955 "Acoustic Radiation from Two-Dimensional Rectangular Cutouts in Aerodynamic Surface," NASA-TN-3487.
  2. Rossiter, J. E., 1964, "Wind Tunnel Experiments on the Flow over Rectangular Cavities at Subsonic and Transonic Speeds," Reports and Memoranda No. 3438, Aeronautical Research Council, pp. 1-36.
  3. Rockwell, D. and Naudascher E., 1978, "Review-Self Sustaining Oscillations of Flow Past Cavities," Journal of Fluids Engineering, Vol. 100, No. 6, pp. 152-165. https://doi.org/10.1115/1.3448624
  4. Bilanin, A. J. and Covert, E. E., 1973 "Estimation of Possible Excitation Frequencies for Shallow Rectangular Cavities," AIAA Journal, Vol. 11, No. 3.
  5. Heller, H. H., Holmes, D. G. and Covert E. E., 1971, "Flow-Induced Pressure Oscillations in Shallow Cavities," J. Sound & Vib., vol. 18, pp. 545-553. https://doi.org/10.1016/0022-460X(71)90105-2
  6. Zhang, X., 1995, "Compressible Cavity Flow Oscillation Due to Shear Layer Instabilities and Pressure Feedback," AIAA Journal, Vol. 33, No. 8, pp. 1404-1411. https://doi.org/10.2514/3.12845
  7. Zhang, X., Rona, A. and Edwards, J. A., 1998, "The Effect of Trailing Edge Geometry on Cavity Flow Oscillation Driven by a Supersonic Shear Layer," The Aeronautical Journal, Vol. 102, No. 1013, pp. 129-136.
  8. Yang, D. G., Li J. Q., Fan, Z. L. and Yao, D., 2010, "Aerodynamic Characteristics of Transonic and Supersonic Flow over Rectangular Cavities," Flow Turbulence Combust, Vol. 84, No. 4, pp. 639-652. https://doi.org/10.1007/s10494-010-9246-7
  9. Atvars, K., Knowles K., Ritchie, S. A. and Lawson, N. J., 2009, "Experimental and Computational Investigation of an 'Open' Transonic Cavity Flow," Proceedings of IMechE. Part G: Journal of Aerospace Engineering, Vol. 223, No. 4, pp. 357-368. https://doi.org/10.1243/09544100JAERO445
  10. Lee, Y. K., Kang, M. S., Kim, H. D. and Setoguchi T., 2008, "Passive Control Techniques to Alleviate Supersonic Cavity Flow Oscillation," Journal of Propulsion and Power, Vol. 24, No. 4, pp. 697-703. https://doi.org/10.2514/1.30292
  11. Stallings, R. L. and Wilcox, F. J., 1987, "Experimental Cavity Pressure Distributions at Supersonic Speeds," NASA TP-2683.
  12. Ye, A. R., Das, R. and Kim, H. D., 2015, "A Study of the Transonic and Supersonic Flows over a Open Cavity on Curved Wall," Trans. Korean Soc. Mech. Eng. B, Vol. 39, No.3. pp. 231-236. https://doi.org/10.3795/KSME-B.2015.39.3.231

Cited by

  1. Numerical Analysis of the High-Subsonic Cavity Flows over a Curved Wall vol.20, pp.1, 2016, https://doi.org/10.6108/KSPE.2016.20.1.001
  2. A Study on the Pressure Oscillations in the High-Subsonic Cavity Flows over a Curved Wall vol.20, pp.5, 2016, https://doi.org/10.6108/KSPE.2016.20.5.077