DOI QR코드

DOI QR Code

3',4',5',5,7-Pentamethoxyflavone Sensitizes Cisplatin-Resistant A549 Cells to Cisplatin by Inhibition of Nrf2 Pathway

  • Hou, Xiangyu (School of Pharmaceutical Science, Sun Yat-sen University) ;
  • Bai, Xupeng (School of Pharmaceutical Science, Sun Yat-sen University) ;
  • Gou, Xiaoli (School of Pharmaceutical Science, Sun Yat-sen University) ;
  • Zeng, Hang (School of Pharmaceutical Science, Sun Yat-sen University) ;
  • Xia, Chen (School of Pharmaceutical Science, Sun Yat-sen University) ;
  • Zhuang, Wei (School of Pharmaceutical Science, Sun Yat-sen University) ;
  • Chen, Xinmeng (School of Pharmaceutical Science, Sun Yat-sen University) ;
  • Zhao, Zhongxiang (School of Chinese Materia Medica, Guangzhou University of Chinese Medicine) ;
  • Huang, Min (School of Pharmaceutical Science, Sun Yat-sen University) ;
  • Jin, Jing (School of Pharmaceutical Science, Sun Yat-sen University)
  • Received : 2014.06.30
  • Accepted : 2015.01.26
  • Published : 2015.05.31

Abstract

Nuclear factor erythroid 2-related factor 2 (Nrf2) is an important redox-sensitive transcription factor that regulates the expression of several cytoprotective genes. More recently, genetic analyses of human tumors have indicated that Nrf2 may cause resistance to chemotherapy. In this study, we found that the expression levels of Nrf2 and its target genes GCLC, HO-1, NQO1 were significantly higher in cisplatin-resistant A549 (A549/CDDP) cells than those in A549 cells, and this resistance was partially reversed by Nrf2 siRNA. 3,4,5,5,7-Pentamethoxyflavone (PMF), a natural flavon extracted from Rutaceae plants, sensitized A549/CDDP to CDDP and substantially induced apoptosis compared with that of CDDP alone treated group, and this reversal effect decreased when Nrf2 was downregulated by siRNA. Mechanistically, PMF reduced Nrf2 expression leading to a reduction of Nrf2 downstream genes, and in contrast, this effect was decreased by blocking Nrf2 with siRNA. Taken together, these results demonstrated that PMF could be used as an effective adjuvant sensitizer to increase the efficacy of chemotherapeutic drugs by downregulating Nrf2 signaling pathway.

Keywords

References

  1. Boesch-Saadatmandi, C., Wagner, A.E., Graeser, A.C., Hundhausen, C., Wolffram, S., and Rimbach, G. (2009). Ochratoxin A impairs Nrf2-dependent gene expression in porcine kidney tubulus cells. J. Anim. Physiol. Anim. Nutr. 93, 547-554. https://doi.org/10.1111/j.1439-0396.2008.00838.x
  2. Cai, H., Sale, S., Schmid, R., Britton, R.G., Brown, K., Steward, W.P., and Gescher, A.J. (2009). Flavones as colorectal cancer chemopreventive agents--phenol-o-methylation enhances efficacy. Cancer Prev. Res. 2, 743-750. https://doi.org/10.1158/1940-6207.CAPR-09-0081
  3. Chen, F., Liu, Y., Wang, S., Guo, X., Shi, P., Wang, W., and Xu, B. (2013). Triptolide, a Chinese herbal extract, enhances drug sensitivity of resistant myeloid leukemia cell lines through downregulation of HIF-1a and Nrf2. Pharmacogenomics 14, 1305-1317. https://doi.org/10.2217/pgs.13.122
  4. Chian, S., Li, Y. Y., Wang, X.J., and Tang, X.W. (2014). Luteolin sensitizes two oxaliplatin-resistant colorectal cancer cell lines to chemotherapeutic drugsvia inhibition of the Nrf2 pathway. Asian Pac. J. Cancer Prev. 15, 2911-2916. https://doi.org/10.7314/APJCP.2014.15.6.2911
  5. D'Addario, G., Felip, E., and ESMO Guidelines Working Group. (2009). Non-small-cell lung cancer: ESMO clinical recommendations for diagnosis, treatment and follow-up. Ann. Oncol. 20, 68-70.
  6. El-Sheikh, A.A., Greupink, R., Wortelboer, H.M., van den Heuvel, J.J., Schreurs, M., Koenderink, J.B., Masereeuw, R., and Russel, F.G. (2013). Interaction of immunosuppressive drugs with human organic anion transporter (OAT) 1 and OAT3, and multidrug resistance-associated protein (MRP) 2 and MRP4. Transl. Res. 162, 398-409. https://doi.org/10.1016/j.trsl.2013.08.003
  7. Fujimori, S., Abe, Y., Nishi, M., Hamamoto, A., Inoue, Y., Ohnishi, Y., Nishime, C., Matsumoto, H., Yamazaki, H., Kijima, H., et al. (2004). The subunits of glutamate cysteine ligase enhance cisplatin resistance in human non-small cell lung cancer xenografts in vivo. Int. J. Oncol. 25, 413-418.
  8. Gao, A.M., Ke, Z.P., Shi, F., Sun, G.C., and Chen, H. (2013a). Chrysin enhances sensitivity of BEL-7402/ADM cells to doxorubicin by suppressing PI3K/Akt/Nrf2 and ERK/Nrf2 pathway. Chem. Biol. Interact. 206, 100-108. https://doi.org/10.1016/j.cbi.2013.08.008
  9. Gao, A.M., Ke, Z.P., Wang, J.N., Yang, J.Y., Chen, S.Y., and Chen, H. (2013b). Apigenin sensitizes doxorubicin-resistant hepatocellular carcinoma BEL-7402/ADM cells to doxorubicin via inhibiting PI3K/Akt/Nrf2 pathway. Carcinogenesis 34, 1806-1814. https://doi.org/10.1093/carcin/bgt108
  10. Hayashi, A., Suzuki, H., Itoh, K., Yamamoto, M., and Sugiyama, Y. (2003). Transcription factor Nrf2 is required for the constitutive and inducible expression of multidrug resistance-associated protein1 in mouse embryo fibroblasts. Biochem. Biophs. Res. Commun. 310, 824-829. https://doi.org/10.1016/j.bbrc.2003.09.086
  11. Hayes, J.D., and McMahon, M. (2009). NRF2 and KEAP1 mutations: permanent activation of an adaptive response in cancer. Trends Biochem. Sci. 34, 176-188. https://doi.org/10.1016/j.tibs.2008.12.008
  12. Itoh, K., Mimura, J. and Yamamoto, M. (2010). Discovery of the negative regulator of Nrf2, Keap1: a historical overview. Antioxid. Redox Signal. 13, 1665-1678. https://doi.org/10.1089/ars.2010.3222
  13. Jaiswal, A.K. (2004). Nrf2 signaling in coordinated activation of antioxidant gene expression. Free Radic. Biol. Med. 36, 1199-1207. https://doi.org/10.1016/j.freeradbiomed.2004.02.074
  14. Ji, X., Wang, H., Zhu, J., Zhu, L., Pan, H., Li, W., Zhou, Y., Cong, Z., Yan, F., and Chen, S. (2013). Knockdown of Nrf2 suppresses glioblastoma angiogenesis by inhibiting hypoxia-induced activation of HIF-1alpha. Int. J. Cancer 135, 574-584.
  15. Kim, J.K., and Jang, H.D. (2014). Nrf2-mediated HO-1 induction coupled with the ERK signaling pathway contributes to indirect antioxidant capacity of caffeic acid phenethyl ester in HepG2 cells. Int. J. Mol. Sci. 15, 12149-12165. https://doi.org/10.3390/ijms150712149
  16. Kinoshita, T. and Firman, K. (1997). Myricetin 5,7,3',4',5'-pentamethyl ether and other methylated flavonoids from Murraya Paniculata. Phytochemistry 45, 179-181 https://doi.org/10.1016/S0031-9422(96)00853-9
  17. Kiyohara, C., Yoshimasu, K., Takayama, K., and Nakanishi, Y. (2005). NQO1, MPO, and the risk of lung cancer: A HuGE review. Genet. Med. 7, 463-478. https://doi.org/10.1097/01.gim.0000177530.55043.c1
  18. Kweon, M.H., Adhami, V.M., Lee, J.S., and Mukhtar, H. (2006). Constitutive overexpression of Nrf2-dependent heme oxygenase- 1 in A549 cells contributes to resistance to apoptosis induced by epigallocatechin 3-gallate. J. Biol. Chem. 281, 33761-33772. https://doi.org/10.1074/jbc.M604748200
  19. Langer, C.J., Manola, J., Bernardo, P., Kugler, J.W., Bonomi, P., Cella, D., and Johnson, D.H. (2002). Cisplatin-based therapy for elderly patients with advanced non-small-cell lung cancer: implications of eastern cooperative oncology group 5592, a randomized trial. J. Natl. Cancer Inst. 94, 173-181. https://doi.org/10.1093/jnci/94.3.173
  20. Lim, J., Lee, S.H., Cho, S., Lee, I.S., Kang, B.Y., and Choi, H.J. (2013). 4-methoxychalcone enhances cisplatin-induced oxidative stress and cytotoxicity by inhibiting the Nrf2/ARE-mediated defense mechanism in A549 lung cancer cells. Mol. Cells 36, 340-346. https://doi.org/10.1007/s10059-013-0123-9
  21. Longley, D.B., and Johnston, P.G. (2005). Molecular mechanisms of drug resistance. J. Pathol. 205, 275-292. https://doi.org/10.1002/path.1706
  22. Lu, Y.Q., Wang, L.Y., Luo, Y.P. (2011). The antifungal activities and composition analysis of the essential oil from Murraya paniculata. Agrochemicals 50, 443-446.
  23. Maher, J.M., Aleksunes, L.M., Dieter, M.Z., Tanaka, Y., Peters, J.M., Manautou, J.E., and Klaassen, C.D. (2008). Nrf2- and PPAR alpha-mediated regulation of hepatic Mrp transporters after exposure to perfluorooctanoic acid and perfluorodecanoic acid. Toxicol. Sci. 106, 319-328. https://doi.org/10.1093/toxsci/kfn177
  24. Na, H.K., and Surh, Y.J. (2014). Oncogenic potential of Nrf2 and its principal target protein heme oxygenase-1. Free Radic. Biol. Med. 67, 353-365. https://doi.org/10.1016/j.freeradbiomed.2013.10.819
  25. Ohnuma, T., Matsumoto, T., Itoi, A., Ayako Kawana, Nishiyama, T., Ogura, K., and Hiratsuka, A. (2011). Enhanced sensitivity of A549 cells to the cytotoxic action of anticancer drugs via suppression of Nrf2 by procyanidins from Cinnamomi Cortex extract. Biochem. Biophys. Res. Commun. 413, 3623-3629.
  26. Ren, D., Villeneuve, N.F., Jiang, T., Wu, T., Lau, A., Toppin, H.A., and Zhang, D.D. (2011). Brusatol enhances the efficacy of chemotherapy by inhibiting the Nrf2-mediated defense mechanism. Proc. Natl. Acad. Sci. USA 108, 1433-1438. https://doi.org/10.1073/pnas.1014275108
  27. Shim, G.S., Manandhar, S., Shin, D.H., Kim, T.H., and Kwak, M.K. (2009). Acquisition of doxorubicin resistance in ovarian carcinoma cells accompanies activation of the NRF2 pathway. Free Radic. Biol. Med. 47, 1619-1631. https://doi.org/10.1016/j.freeradbiomed.2009.09.006
  28. Signore, M., Ricci-Vitiani, L., and De Maria, R. (2013). Targeting apoptosis pathways in cancer stem cells. Cancer Lett. 332, 374-382. https://doi.org/10.1016/j.canlet.2011.01.013
  29. Singh, A., Misra V., Thimmulappa R.K., Lee H., Ames S., Hoque M.O., Herman J.G., Baylin S.B., Sidransky D., Gabrielson E., et al. (2006) Dysfunctional KEAP1-NRF2 interaction in non-smallcell lung cancer. PLoS Med. 3, 1865-1874.
  30. Singh, A., Boldin-Adamsky, S., Thimmulappa, R.K., Rath, S.K., Ashush, H., Coulter, J., Blackford, A., Goodman, S.N., Bunz, F., Watson, W.H., et al. (2008). RNAi-mediated silencing of nuclear factor erythroid-2-related factor 2 gene expression in non-small cell lung cancer inhibits tumor growth and increases efficacy of chemotherapy. Cancer Res. 68, 7975-7984. https://doi.org/10.1158/0008-5472.CAN-08-1401
  31. Soeiro, M.N., and Castro, S.L. (2009). Trypanosoma cruzi targets for new chemotherapeutic approaches. Expert Opin. Ther. Targets 13, 105-121. https://doi.org/10.1517/14728220802623881
  32. Tang, X., Wang, H., Fan, L., Wu, X., Xin, A., Ren, H., and Wang, X.J. (2011). Luteolin inhibits Nrf2 leading to negative regulation of the Nrf2/ARE pathway and sensitization of human lung carcinoma A549 cells to therapeutic drugs. Free Radic. Biol. Med. 50, 1599-1609. https://doi.org/10.1016/j.freeradbiomed.2011.03.008
  33. Tomazela, D.M., Pupo, M.T., Passador, E.A., da Silva, M.F., Vieira, P.C., Fernandes, J.B., Fo, E.R., Oliva, G., and Pirani, J.R. (2000). Pyrano chalcones and a flavone from Neoraputia magnifica and their Trypanosoma cruzi glycosomal glyceraldehyde 3-phosphate dehydrogenase inhibitory activities. Phytochemistry 55, 643-651. https://doi.org/10.1016/S0031-9422(00)00248-X
  34. Venugopal, R., and Jaiswal, A.K. (1996). Nrf1 and Nrf2 positively and c-Fos and Fra1 negatively regulate the human antioxidant response element-mediated expression of NAD(P)H:quinone oxidoreductase1 gene. Proc. Natl. Acad. Sci. USA 93, 14960-14965. https://doi.org/10.1073/pnas.93.25.14960
  35. Wang, X.J., Sun, Z., Villeneuve, N.F., Zhang, S., Zhao, F., Li, Y., Chen, W., Yi, X., Zheng, W., Wondrak, G.T., et al. (2008). Nrf2 enhances resistance of cancer cells to chemotherapeutic drugs, the dark side of Nrf2. Carcinogenesis 29, 1235-1243. https://doi.org/10.1093/carcin/bgn095
  36. Was, H., Cichon, T., Smolarczyk, R., Rudnicka, D., Stopa, M., Chevalier, C., Leger, J.J., Lackowska, B., Grochot, A., Bojkowska, K., et al. (2006). Overexpression of heme oxygenase-1 in murine melanoma: increased proliferation and viability of tumor cells, decreased survival of mice. Am. J. Pathol. 169, 2181-2198. https://doi.org/10.2353/ajpath.2006.051365
  37. Zhong, Y., Zhang, F., Sun, Z., Zhou, W., Li, Z.Y., You, Q.D., Guo, Q.L., and Hu, R. (2013). Drug resistance associates with activation of Nrf2 in MCF-7/DOX cells, and wogonin reverses it by down-regulating Nrf2-mediated cellular defense response. Mol. Carcinog. 52, 824-834.

Cited by

  1. Co-delivery with nano-quercetin enhances doxorubicin-mediated cytotoxicity against MCF-7 cells vol.43, pp.2, 2016, https://doi.org/10.1007/s11033-016-3942-x
  2. Emerging role of NRF2 in chemoresistance by regulating drug-metabolizing enzymes and efflux transporters vol.48, pp.4, 2016, https://doi.org/10.1080/03602532.2016.1197239
  3. Dehydrobruceine B enhances the cisplatin-induced cytotoxicity through regulation of the mitochondrial apoptotic pathway in lung cancer A549 cells vol.89, 2017, https://doi.org/10.1016/j.biopha.2017.02.055
  4. Promoter region variation in NFE2L2 influences susceptibility to ototoxicity in patients exposed to high cumulative doses of cisplatin 2016, https://doi.org/10.1038/tpj.2016.52
  5. Strange Bedfellows: Nuclear Factor, Erythroid 2-Like 2 (Nrf2) and Hypoxia-Inducible Factor 1 (HIF-1) in Tumor Hypoxia vol.6, pp.2, 2017, https://doi.org/10.3390/antiox6020027
  6. The Essential Role of H19 Contributing to Cisplatin Resistance by Regulating Glutathione Metabolism in High-Grade Serous Ovarian Cancer vol.6, pp.1, 2016, https://doi.org/10.1038/srep26093
  7. An overview of chemical inhibitors of the Nrf2-ARE signaling pathway and their potential applications in cancer therapy vol.99, 2016, https://doi.org/10.1016/j.freeradbiomed.2016.09.010
  8. to the chemotherapeutic agent cisplatin vol.11, pp.6, 2018, https://doi.org/10.1242/dmm.033506
  9. Ursolic acid sensitizes cisplatin-resistant HepG2/DDP cells to cisplatin via inhibiting Nrf2/ARE pathway vol.10, pp.None, 2015, https://doi.org/10.2147/dddt.s110505
  10. Proteasome Inhibitor-Induced IκB/NF-κB Activation is Mediated by Nrf2-Dependent Light Chain 3B Induction in Lung Cancer Cells vol.41, pp.12, 2015, https://doi.org/10.14348/molcells.2018.0277
  11. The Nrf2/PGC1 α Pathway Regulates Antioxidant and Proteasomal Activity to Alter Cisplatin Sensitivity in Ovarian Cancer vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/4830418
  12. Nrf2 Inhibitor, Brusatol in Combination with Trastuzumab Exerts Synergistic Antitumor Activity in HER2-Positive Cancers by Inhibiting Nrf2/HO-1 and HER2-AKT/ERK1/2 Pathways vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/9867595
  13. Role of Nrf2 and mitochondria in cancer stem cells; in carcinogenesis, tumor progression, and chemoresistance vol.179, pp.None, 2015, https://doi.org/10.1016/j.biochi.2020.09.014
  14. Role of NRF2 in Lung Cancer vol.10, pp.8, 2015, https://doi.org/10.3390/cells10081879