DOI QR코드

DOI QR Code

In Vivo Expression of the PTB-deleted Odin Mutant Results in Hydrocephalus

  • Park, Sunjung (Department of Biological Science, Sookmyung Women's University) ;
  • Lee, Haeryung (Department of Biological Science, Sookmyung Women's University) ;
  • Park, Soochul (Department of Biological Science, Sookmyung Women's University)
  • Received : 2014.10.30
  • Accepted : 2014.12.11
  • Published : 2015.05.31

Abstract

Odin has been implicated in the downstream signaling pathway of receptor tyrosine kinases, such as the epidermal growth factor and Eph receptors. However, the physiologically relevant function of Odin needs to be further determined. In this study, we used Odin heterozygous mice to analyze the Odin expression pattern; the targeted allele contained a ${\beta}$-geo gene trap vector inserted into the 14t intron of the Odin gene. Interestingly, we found that Odin was exclusively expressed in ependymal cells along the brain ventricles. In particular, Odin was highly expressed in the subcommissural organ, a small ependymal glandular tissue. However, we did not observe any morphological abnormalities in the brain ventricles or ependymal cells of Odin null-mutant mice. We also generated BAC transgenic mice that expressed the PTB-deleted Odin (dPTB) after a floxed GFP-STOP cassette was excised by tissue-specific Cre expression. Strikingly, Odin-dPTB expression played a causative role in the development of the hydrocephalic phenotype, primarily in the midbrain. In addition, Odin-dPTB expression disrupted proper development of the subcommissural organ and interfered with ependymal cell maturation in the cerebral aqueduct. Taken together, our findings strongly suggest that Odin plays a role in the differentiation of ependymal cells during early postnatal brain development.

Keywords

References

  1. Baas, D., Meiniel, A., Benadiba, C., Bonnafe, E., Meiniel, O., Reith, W., and Durand, B. (2006). A deficiency in RFX3 causes hydrocephalus associated with abnormal differentiation of ependymal cells. Eur. J. Neurosci. 24, 1020-1030. https://doi.org/10.1111/j.1460-9568.2006.05002.x
  2. Blatt, E.N., Yan, X.H., Wuerffel, M.K., Hamilos, D.L., and Brody, S.L. (1999). Forkhead transcription factor HFH-4 expression is temporally related to ciliogenesis. Am. J. Respir. Cell Mol. Biol. 21, 168-176. https://doi.org/10.1165/ajrcmb.21.2.3691
  3. Breunig, J.J., Arellano, J.I., and Rakic, P. (2010). Cilia in the brain: going with the flow. Nat. Neurosci. 13, 654-655. https://doi.org/10.1038/nn0610-654
  4. Carlen, M., Meletis, K., Goritz, C., Darsalia, V., Evergren, E., Tanigaki, K., Amendola, M., Barnabe-Heider, F., Yeung, M.S., Naldini, L., et al. (2009). Forebrain ependymal cells are Notchdependent and generate neuroblasts and astrocytes after stroke. Nat. Neurosci. 12, 259-267. https://doi.org/10.1038/nn.2268
  5. Cottrell, G.T., and Ferguson, A.V. (2004). Sensory circumventricular organs: central roles in integrated autonomic regulation. Regul. Pept. 117, 11-23. https://doi.org/10.1016/j.regpep.2003.09.004
  6. Dietrich, P., Shanmugasundaram, R., Shuyu, E., and Dragatsis, I. (2009). Congenital hydrocephalus associated with abnormal subcommissural organ in mice lacking huntingtin in Wnt1 cell lineages. Hum. Mol. Genet. 18, 142-150.
  7. Ghersi, E., Noviello, C., and D'Adamio, L. (2004). Amyloid-beta protein precursor (AbetaPP) intracellular domain-associated protein-1 proteins bind to AbetaPP and modulate its processing in an isoform-specific manner. J. Biol. Chem. 279, 49105-49112. https://doi.org/10.1074/jbc.M405329200
  8. Guirao, B., Meunier, A., Mortaud, S., Aguilar, A., Corsi, J.M., Strehl, L., Hirota, Y., Desoeuvre, A., Boutin, C., Han, Y.G., et al. (2010). Coupling between hydrodynamic forces and planar cell polarity orients mammalian motile cilia. Nat. Cell Biol. 12, 341-350. https://doi.org/10.1038/ncb2040
  9. Huh, M.S., Todd, M.A., and Picketts, D.J. (2009). SCO-ping out the mechanisms underlying the etiology of hydrocephalus. Physiology (Bethesda) 24, 117-126. https://doi.org/10.1152/physiol.00039.2008
  10. Ihrie, R.A., and Alvarez-Buylla, A. (2011). Lake-front property: a unique germinal niche by the lateral ventricles of the adult brain. Neuron 70, 674-686. https://doi.org/10.1016/j.neuron.2011.05.004
  11. Jacquet, B.V., Salinas-Mondragon, R., Liang, H., Therit, B., Buie, J.D., Dykstra, M., Campbell, K., Ostrowski, L.E., Brody, S.L., and Ghashghaei, H.T. (2009). FoxJ1-dependent gene expression is required for differentiation of radial glia into ependymal cells and a subset of astrocytes in the postnatal brain. Development. 136, 4021-4031. https://doi.org/10.1242/dev.041129
  12. Kajiho, H., Fukushima, S., Kontani, K., and Katada, T. (2012). RINL, guanine nucleotide exchange factor Rab5-subfamily, is involved in the EphA8-degradation pathway with odin. PLoS One 7, e30575. https://doi.org/10.1371/journal.pone.0030575
  13. Kim, Y., Song, E., Choi, S., and Park, S. (2007). Engineering lacZ Reporter gene into an ephA8 bacterial artificial chromosome using a highly efficient bacterial recombination system. J. Biochem. Mol. Biol. 40, 656-661. https://doi.org/10.5483/BMBRep.2007.40.5.656
  14. Kim, J., Lee, H., Kim, Y., Yoo, S., Park, E., and Park, S. (2010). The SAM domains of Anks family proteins are critically involved in modulating the degradation of EphA receptors. Mol. Cell. Biol. 30, 1582-1592. https://doi.org/10.1128/MCB.01605-09
  15. Kristiansen, T.Z., Nielsen, M.M., Blagoev, B., Pandey, A., and Mann, M. (2004). Mouse embryonic fibroblasts derived from Odin deficient mice display a hyperproliiferative phenotype. DNA Res. 11, 285-292.
  16. Lacar, B., Young, S.Z., Platel, J.C., and Bordey, A. (2010). Imaging and recording subventricular zone progenitor cells in live tissue of postnatal mice. Front. Neurosci. 4.
  17. Lang, B., Song, B., Davidson, W., MacKenzie, A., Smith, N., McCaig, C.D., Harmar, A.J., and Shen, S. (2006). Expression of the human PAC1 receptor leads to dose-dependent hydrocephalus-related abnormalities in mice. J. Clin. Invest. 116, 1924-1934. https://doi.org/10.1172/JCI27597
  18. Ortloff, A.R., Vio, K., Guerra, M., Jaramillo, K., Kaehne, T., Jones, H., McAllister, J.P., 2nd, and Rodriguez, E. (2013). Role of the subcommissural organ in the pathogenesis of congenital hydrocephalus in the HTx rat. Cell Tissue Res. 352, 707-725. https://doi.org/10.1007/s00441-013-1615-9
  19. Paez-Gonzalez, P., Abdi, K., Luciano, D., Liu, Y., Soriano-Navarro, M., Rawlins, E., Bennett, V., Garcia-Verdugo, J.M., and Kuo, C.T. (2011). Ank3-dependent SVZ niche assembly is required for the continued production of new neurons. Neuron 71, 61-75. https://doi.org/10.1016/j.neuron.2011.05.029
  20. Pandey, A., Blagoev, B., Kratchmarova, I., Fernandez, M., Nielsen, M., Kristiansen, T.Z., Ohara, O., Podtelejnikov, A.V., Roche, S., Lodish, H.F., et al. (2002). Cloning of a novel phosphotyrosine binding domain containing molecule, Odin, involved in signaling by receptor tyrosine kinases. Oncogene 21, 8029-8036. https://doi.org/10.1038/sj.onc.1205988
  21. Park, E., Kim, Y., Noh, H., Lee, H., Yoo, S., and Park, S. (2013). EphA/ephrin-A signaling is critically involved in region-specific apoptosis during early brain development. Cell Death Differ. 20, 169-180. https://doi.org/10.1038/cdd.2012.121
  22. Perez-Figares, J.M., Jimenez, A.J., and Rodriguez, E.M. (2001). Subcommissural organ, cerebrospinal fluid circulation, and hydrocephalus. Microsc. Res. Tech. 52, 591-607. https://doi.org/10.1002/1097-0029(20010301)52:5<591::AID-JEMT1043>3.0.CO;2-7
  23. Picketts, D.J. (2006). Neuropeptide signaling and hydrocephalus: SCO with the flow. J. Clin. Invest. 116, 1828-1832. https://doi.org/10.1172/JCI29148
  24. Qin, S., Liu, M., Niu, W., and Zhang, C.L. (2011). Dysregulation of Kruppel-like factor 4 during brain development leads to hydrocephalus in mice. Proc. Natl. Acad. Sci. USA 108, 21117-21121. https://doi.org/10.1073/pnas.1112351109
  25. Ramos, C., Fernandez-Llebrez, P., Bach, A., Robert, B., and Soriano, E. (2004). Msx1 disruption leads to diencephalon defects and hydrocephalus. Dev. Dyn. 230, 446-460. https://doi.org/10.1002/dvdy.20070
  26. Rodriguez, E.M., Rodriguez, S., and Hein, S. (1998). The subcommissural organ. Microsc. Res. Tech. 41, 98-123. https://doi.org/10.1002/(SICI)1097-0029(19980415)41:2<98::AID-JEMT2>3.0.CO;2-M
  27. Shin, J., Gu, C., Park, E., and Park, S. (2007). Identification of phosphotyrosine binding domain-containing proteins as novel downstream targets of the EphA8 signaling function. Mol. Cell. Biol. 27, 8113-8126. https://doi.org/10.1128/MCB.00794-07
  28. Tong, J., Sydorskyy, Y., St-Germain, J.R., Taylor, P., Tsao, M.S., and Moran, M.F. (2013). Odin (ANKS1A) modulates EGF receptor recycling and stability. PLoS One 8, e64817. https://doi.org/10.1371/journal.pone.0064817
  29. Uhlik, M.T., Temple, B., Bencharit, S., Kimple, A.J., Siderovski, D.P., and Johnson, G.L. (2005). Structural and evolutionary division of phosphotyrosine binding (PTB) domains. J. Mol. Biol. 345, 1-20. https://doi.org/10.1016/j.jmb.2004.10.038
  30. Whitsett, J.A., and Tichelaar, J.W. (1999). Forkhead transcription factor HFH-4 and respiratory epithelial cell differentiation. Am. J. Respir. Cell Mol. Biol. 21, 153-154. https://doi.org/10.1165/ajrcmb.21.2.f159
  31. Yu, X., Ng, C.P., Habacher, H., and Roy, S. (2008). Foxj1 transcription factors are master regulators of the motile ciliogenic program. Nat Genet. 40, 1445-1453. https://doi.org/10.1038/ng.263
  32. Zhang, D., Stumpo, D.J., Graves, J.P., DeGraff, L.M., Grissom, S.F., Collins, J.B., Li, L., Zeldin, D.C., and Blackshear, P.J. (2006). Identification of potential target genes for RFX4_v3, a transcription factor critical for brain development. J. Neurochem. 98, 860-875. https://doi.org/10.1111/j.1471-4159.2006.03930.x
  33. Zhao, C., Suh, H., and Gage, F.H. (2009). Notch keeps ependymal cells in line. Nat. Neurosci. 12, 243-245. https://doi.org/10.1038/nn0309-243

Cited by

  1. Ependymal Cells Require Anks1a for Their Proper Development vol.42, pp.3, 2019, https://doi.org/10.14348/molcells.2018.0432