DOI QR코드

DOI QR Code

The Strength and Drying Shrinkage Properties of Alkali-activated Slag using Hard-burned MgO

MgO를 혼합한 알칼리 활성화 슬래그의 강도와 건조수축 특성

  • 김태완 (부산대학교 생산기술연구소) ;
  • 전유빈 (울산과학기술대학교 도시환경공학부)
  • Received : 2015.03.20
  • Accepted : 2015.05.07
  • Published : 2015.05.30

Abstract

In this study, the properties of strength and drying shrinkage of alkali-activated slag cement (AASC) with magnesium oxide (MgO) contents between 0 and 16 wt% were investigated. The ground granulated furnace blast slag (GGBFS) was activated by potassium hydroxide (KOH) and dosage of activator was 2M and 4M. The MgO was replaced with 2% to 16% of GGBFS by weight. The water-binder ratio (w/b) was 0.5. In the result, the higher MgO content leads to a slightly higher degree of reaction and thus to a higher compressive strength at all ages. The compressive strength and ultra sonic velocity (UPV) increased with increases MgO contents. The drying shrinkage of AASC was decreased as the contents of MgO increases. The results from SEM confirmed that there were densified reaction product of higher MgO content specimens.

본 연구는 MgO를 0~16% 사용한 알칼리 활성화 슬래그 시멘트 (AASC)의 강도와 건조수축 특성에 관안 연구이다. 고로슬래그 미분말 (GGBFS)는 KOH를 활성화제로 사용하였고, 활성화제의 농도는 2M과 4M이다. MgO는 GGBFS의 중량에 대해 치환하였고 물-결합재 비 (w/b)는 0.5이다. 실험결과, 높은 MgO 치환율은 높은 수화반응으로 모든 재령에서 높은 압축강도를 나타내었다. 압축강도와 초음파속도 (UPV)는 MgO의 양이 증가함에 따라 증가되었다. AASC의 건조수축은 MgO의 양이 증가함에 따라 감소하였다. SEM 결과를 통해 높은 양의 MgO 시험체는 치밀한 반응 생성물질이 만들어 진 것을 확인할 수 있다.

Keywords

References

  1. Akm Atum, I., Yilmaz, I. (2002), Study on steel furnace slags with high MgO as additive in Portland cement, Cement and Concrete Research, 32(8), 1247-1249. https://doi.org/10.1016/S0008-8846(02)00763-9
  2. Chatterji, S. (1995), Mechanism of expansion of concrete due to the presence of dead-burnt CaO and MgO, Cement and Concrete research, 25, 51-56. https://doi.org/10.1016/0008-8846(94)00111-B
  3. Choi, S. W., Jang, B. S., Kim, J. H., Lee, K. M. (2014), Durability characteristics of fly ash concrete containing lightly-burnt MgO, Construction and Building Materials, 58, 77-84. https://doi.org/10.1016/j.conbuildmat.2014.01.080
  4. Choi, S. W., Kim, J. H., Lee, K. M., Kwon, Y. G., Jang, B. S. (2011), Durability Characteristics of Concrete Containing Light Burnt MgO Powder, Journal of the Korea Concrete Institute, 23(2), 609-615 (in Korean). https://doi.org/10.4334/JKCI.2011.23.5.609
  5. Collins, F., Sanjayan, J. G. (2000), Effect of pore size distribution on drying shrinkage of alkali-activated slag concrete, Cement and Concrete Research, 30(9), 1404-1406.
  6. Du, C. (2005), A review of magnesium oxide in concrete, Concrete International, 45-50.
  7. E. Douglas, A. Bilodeau, V. M. Malhotra (1992), Properties and durability of alkali-activated slag concrete, ACI Mater. J., 89, 509-516.
  8. Fang, Y., Gu, Y., Kang, Q. (2011), Effect of Fly Ash, MgO and Curing Solution on the Chemical Shrinkage of Alkali-Activated Slag Cement, Advanced Materials Research, 168-170, 2008-2012.
  9. Gao, P. W., Wu, S. X., Lu, X. L., Deng, M., Lin, P. H., Wu, Z. R., Tang, M. S. (2007), Soundness evaluation of concrete with MgO, Construction and Building Materials, 21, 132-138. https://doi.org/10.1016/j.conbuildmat.2005.06.033
  10. Haha, M. B., Lothenbach, B., Saout, G. L., Winnefeld, F. (2011), Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag - Part I: Effect of MgO, Cement and Concrete Research, 41(9), 955-963. https://doi.org/10.1016/j.cemconres.2011.05.002
  11. Ismail, I., Bernal, S. A., Provis, J. L., Hamdan, S., Deventer, J. S. J. (2013), Drying-induced changes in the structure of alkali-activated pastes, Journal of Material science, 48, 3566-3577. https://doi.org/10.1007/s10853-013-7152-9
  12. Jang, B. S., Kwon, Y. G., Choi, S. W., Lee, K. M. (2011), Fundamental Properties of Cement Composites Containing Lightly Burnt MgO Powders, Journal of the Korea Concrete Institute, 23, 225-233. https://doi.org/10.4334/JKCI.2011.23.2.225
  13. Jin, F., Al-Tabbaa, A. (2014), Strength and hydration products of reactive MgO-silica pastes, Cement and Concrete Composite, 52, 2014, 27-33. https://doi.org/10.1016/j.cemconcomp.2014.04.003
  14. Jin, F., Kai G., Al-Tabbaa, A. (2015), Strength and hydration properties of reactive MgO-activated ground granulated blastfurnace slag paste, Cement & Concrete Composites, 57, 8-16. https://doi.org/10.1016/j.cemconcomp.2014.10.007
  15. Kim, D. Y. (2014), Physical and chemical characteristics of MgO based Mortar for cultural heritage conservation, Seoul National University, Thesis of Master's degree (in Korean).
  16. Li, Z., Zhang, T., Hu, J., Tang, Y., Niu, Y., Wei, J., Yu, Q. (2014), Characterization of reaction products and reaction process of MgO-$SiO_2$-$H_2O$ system at room temperature, Construction and Building Materials, 61, 252-259. https://doi.org/10.1016/j.conbuildmat.2014.03.004
  17. Mo, L., Deng, M., Tang, M. (2010), Effects of calcination condition on expansion property of MaO-type expansive agent used in cement-based materials, Cement and Concrete Research, 40(3), 437-446. https://doi.org/10.1016/j.cemconres.2009.09.025
  18. Pacheco-Torgal, F., Abdollahnejad, Z., Camoes, A. F., M. Jamshidi, Y. D. (2012), Durability of alkali-activated binders: A clear advantage over Portland cement of an unproven issue?, Construction and Building Materials, 30, 400-405. https://doi.org/10.1016/j.conbuildmat.2011.12.017
  19. Palacios, M., Puertas, F. (2007), Effect of shrinkage-reducing admixtures on the properties of alkali-activated slag mortars and pastes, Cement and Concrete Research, 37(5), 691-702. https://doi.org/10.1016/j.cemconres.2006.11.021
  20. Zivica, V. (2007), Effect of type and dosage of alkaline activator and temperature on the properties of alkali-activated slag mixtures, Construction and Building Materials, 21, 1463-1469. https://doi.org/10.1016/j.conbuildmat.2006.07.002

Cited by

  1. Strength and Pore Characteristics of Alkali-activated Slag-Red Mud Cement Mortar used Polymer According to Red Mud Content vol.20, pp.2, 2016, https://doi.org/10.11112/jksmi.2016.20.2.026
  2. 촉진탄산염화에 의한 마그네슘계 고화제의 강도 향상 특성 vol.21, pp.6, 2016, https://doi.org/10.7857/jsge.2016.21.6.135