DOI QR코드

DOI QR Code

The Ductile Behavior Test of Ultra High Performance Fiber Reinforced Concrete Rectangular Beam by the Combination of the Fiber and Group of Reinforcing Bars

강섬유와 철근집합체 조합에 의한 초고강도 섬유보강 콘크리트 직사각형보의 연성거동에 대한 실험

  • 한상묵 (금오공과대학교 사회인프라공학과) ;
  • 안진우 (금오공과대학교 토목공학과)
  • Received : 2015.03.26
  • Accepted : 2015.05.13
  • Published : 2015.05.30

Abstract

The purpose of this paper is to induce the ductile behavior of the UHPFRC member after the peak load by using the bundle of longitudinal reinforcing bar as a substitute for steel fiber. Experiments on the flexural behavior of the Ultra High Performance Concrete rectangular beam with the combination of the steel fiber and longitudinal reinforcing bar were carried out. The volume fractions of steel fiber are 0%, 0.7%, 1%, 1.5%, 2% and the reinforcement ratios of longitudinal reinforcing bar which induce the ductile behavior are 0.0036, 0.016, 0.028 and 0.036. 15 UHPC beams were made with the combination of these test factors. Not only steel fiber but also bundle of longitudinal reinforcing bar has the effect to induce ductile behavior of UHPC structural member. The combination of 0.7% volume fraction of steel fiber and 0.028 reinforcement ratio showed the most economic combination. The relationship of load-deflection, strain variation of the concrete and the crack pattern indicate the usefulness of the bundle of the longitudinal bar which has small diameter with close arrangement each other.

본 논문은 강섬유 대신 철근집합체를 사용하여 초고강도 섬유보강 콘크리트 부재의 최대하중 이후 연성거동을 유도하는 것을 목적으로 한다. 강섬유와 철근집합체의 조합을 가진 직사각형 콘크리트 보에 대한 휨거동 실험을 수행하였다. 강섬유의 혼입률은 0%, 0.7%, 1%, 1.5%, 2%이고, 연성거동을 유도하기 위한 종방향 철근 집합체의 철근비는 0.0036, 0.016, 0.028 그리고 0.036이다. 이러한 실험 요소의 조합으로 15개의 초고강도 콘크리트보가 제작되었다. 강섬유 뿐만 아니라 종방향의 철근 집합체도 초고강도 콘크리트보의 연성거동을 유도하는데 효과를 가지고 있다. 강섬유 혼입률 0.7%와 철근비 0.028인 철근집합체를 사용할 경우 가장 경제적인 조합임을 볼 수 있다. 하중과 처짐관계, 콘크리트 응력의 변화 및 균열양상 등이 좁은 간격을 가진 작은 직경의 종방향 철근 집합체의 유용성을 나타내고 있다.

Keywords

References

  1. Chan, S. Y. N., Feng, N. Q., Tsang, M. K. C. (2000), Durability of high strength concrete incorporating carrier fluidifying agent, Magazine of Concrete Research, 52(4), 235-242. https://doi.org/10.1680/macr.2000.52.4.235
  2. Ekkehard Fehling, Kai Bunje, Michael Schmidt, Walter Schreiber (2004), Ultra High Performance Composites Bridge across the River Fulda in Kassel, Proceedings of the International Symposium on Ultra High Performance Concrete, 69-75.
  3. Han, S. M., Guo, Q. Y. (2011), Flexural Experiment of Over Reinforced Prestressed High Performance Fiber Reinforced Concrete Girder, Journal of The Korean Society of Hazard Mitigation, 11(5), 91-97. https://doi.org/10.9798/KOSHAM.2011.11.5.091
  4. Han, S. M., Guo, Q. Y. (2011), The Moment Relationship of the Rectangular Ultra High Performance Fiber Reinforced Concrete Beam, Journal of The Korean Society of Hazard Mitigation, 11(3), 9. https://doi.org/10.9798/KOSHAM.2011.11.3.009
  5. Jacques Resplendino (2012), State of the art of design and construction of UHPFRC structures in France, Plenary.2 3rd International Symposium on Ultra-High Performance Concrete.
  6. Juan Angel Lopez, Esteban Camacho (2012), Structural Design and Preliminary Calculations of UHPFRC Truss Footbridge, #1236, 3rd International Symposium on Ultra-High Performance Concrete.
  7. Kim, S. W., Park, J. J., Ryu, G. S., Kang, S. T., Koh, K. T., Development of Ultra High Performance Concrete for Hybrid Stayed Cable Bridge, KICT 2008-073.
  8. Patrick Mazzacane, Roman Ricciotti, Francois Teply (2013), MUCEM: The Builder;s Respective, Proceedings of RILEM-fib-AFGC Int. Symposium on Ultra-High Performance Fiber Reinforced Concrete UHPFRC 2013, 3-16.