DOI QR코드

DOI QR Code

Static Shear Resistance of Cast-In-Place Anchors in Cracked Concrete

균열콘크리트에 매입된 선설치앵커의 정적 전단하중에 대한 저항강도

  • Park, Yong Myung (Dept. of Civil Engineering, Pusan National University) ;
  • Ju, Ho Jung (Dept. of Civil Engineering, Pusan National University) ;
  • Kim, Dong Hyun (Dept. of Civil Engineering, Pusan National University) ;
  • Kang, Moon Ki (Dept. of Civil Engineering, Pusan National University) ;
  • Lee, Jong Han (Dept. of Civil Engineering, Daegu University)
  • Received : 2014.11.19
  • Accepted : 2015.01.19
  • Published : 2015.02.27

Abstract

In this study, an experimental study was performed to evaluate the concrete breakout strength of cast-in-place(CIP) anchors in cracked concrete under static shear loading. The CIP anchors involved in this study were 30mm in diameter with an edge distance of 150mm and an embedment length of 240mm. The experiment was carried out for two specimens in uncracked concrete and three specimens in cracked concrete orthogonal and parallel to the direction of shear loading, respectively. Compared to the uncracked concrete specimen, cracked specimen orthogonal to the direction of shear loading showed no reduction in the concrete breakout strength and that parallel to the load direction about 91% strength which corresponds to 84% of uncracked concrete strength defined in ACI 318-11. Therefore, the experimental results showed smaller decrease in the shear resistance of CIP anchors in cracked concrete than that specified in ACI code which account for 71% strength of uncracked concrete in cracked concrete.

본 연구에서는 균열콘크리트에 매입된 선설치앵커의 정적 전단하중에 대한 콘크리트 파열파괴강도 평가 실험을 수행하였다. 이를 위해 앵커 직경 30mm, 연단거리 150mm, 매입깊이 240mm인 비균열 시험체 2개와 전단하중에 수직한 방향과 평행한 방향의 균열을 모사한 시험체 각각 3개씩에 대해 실험을 수행하였다. 실험으로부터 하중 직각방향 균열 시험체는 비균열 시험체에 비해 강도의 저하가 없었으며 하중 평행 방향 균열 시험체는 91%의 강도를 보였는데, 이는 ACI 318-11의 비균열콘크리트의 저항강도의 84%에 해당하였다. 따라서 현재 ACI 318 기준에서 균열콘크리트의 저항강도를 비균열콘크리트 강도의 71%로 고려하는 것에 비해 작은 감소율을 보였다.

Keywords

References

  1. ACI Committee 349 (2001) Code Requirements for Nuclear Safety Related Concrete Structures, ACI 349-01, Appendix B: Anchoring to concrete, American Concrete Institute.
  2. ACI Committee 318 (2002) Building Code Requirements for Structural Concrete and Commentary, ACI 318-02, Appendix D: Anchoring to concrete, American Concrete Institute.
  3. ETAG 001 (2013) Guideline for European Technical Approval of Metal Anchors for use in Concrete, European Organization for Technical Approvals (EOTA).
  4. ACI Committee 318 (2008) Building Code Requirements for Structural Concrete and Commentary, ACI 318-08, Appendix D: Anchoring to concrete, American Concrete Institute.
  5. ACI Committee 318 (2011) Building Code Requirements for Structural Concrete and Commentary, Appendix D: Anchoring to concrete, American Concrete Institute.
  6. Lee, N.H., Park, K.R., and Suh, Y.P. (2010) Shear Behavior of Headed Anchors with Large Diameters and Deep Embedments, ACI Structural Journal, Vol.107, No.4, pp.146-156.
  7. 한국콘크리트학회(2007) 콘크리트구조설계기준해설, 부록 IV 콘크리트용 앵커. Korean Concrete Institute (2007) Concrete Structure Design Code and Commentary, Appendix IV Anchoring to Concrete (in Korean).
  8. 한국콘크리트학회(2012) 콘크리트구조설계기준해설, 부록 II 콘크리트용 앵커. Korean Concrete Institute (2012) Concrete Structure Design Code and Commentary, Appendix II Anchoring to concrete (in Korean).
  9. Hallowell, J.M. (1996) Tensile and Shear Behavior of Anchors in Uncracked Concrete Under Static and Dynamic Loading, Master Thesis, The University of Texas at Austin.
  10. Klingner, R.E., Mendonca, J.A., and Malik, J.B. (1982) Effect of Reinforcing Details on the Shear Resistance of Short Anchor Bolts Under Reversed Cyclic Loading, ACI Journal, Vol.79, No.1, pp.3-12.
  11. Eligehausen, R., Mallee, R., and Silva, J. (2006) Anchorage in Concrete Construction, Ernst & Sohn.
  12. Eligehausen, R. and Hofmann, J. (2003) Experimental and Mumerical Investigation on Fixings Under Shear Loading Close to an Edge, Report, Institute of Construction Materials, University of Stuttgart (in German).
  13. 박용명, 전명희, 최명국, 김철환, 김인기(2012) 전단력을 받는 선설치 앵커볼트의 콘크리트 파열파괴강도 평가 연구, 한국강구조학회논문집, 한국강구조학회, 제24권, 제2호, pp.207-215. Park, Y.M., Jeon, M.H., Choi, M.K., Kim, C.H., and Kim, I.G. (2012) A Study on the Concrete Breakout Capacity of CIP Anchor Bolts Under Shear Loading, Journal of Korean Society of Steel Construction, KSSC, Vol.24, No.2, pp.207-215 (in Korean).
  14. 박용명, 강문기, 김동현, 이종한, 강충현(2014) 선설치앵커의 동적 전단하중에 대한 저항강도: 비보강 앵커, 한국강구조학회논문집, 한국강구조학회, 제26권, 제1호, pp.11-20. Park, Y.M., Kang, M.G., Kim, D.H., Lee, J.H., and Kang, C.H. (2014) Shear Resistance of CIP Anchors Under Dynamic Loading: Unreinforced Concrete, Journal of Korean Society of Steel Construction, KSSC, Vol.26, No.1, pp.11-20 (in Korean).

Cited by

  1. 지진모의실험에 의한 비균열 및 균열콘크리트에 매입된 비보강 선설치앵커의 전단 저항강도 평가 vol.27, pp.3, 2015, https://doi.org/10.7781/kjoss.2015.27.3.347
  2. 비균열 콘크리트에 매립된 발전설비 정착부 선 설치 앵커의 구조성능 평가 vol.20, pp.11, 2015, https://doi.org/10.5762/kais.2019.20.11.250
  3. 균열 콘크리트에 매립된 발전설비 현장설치용 선 설치 앵커의 구조성능 평가 vol.23, pp.7, 2015, https://doi.org/10.11112/jksmi.2019.23.7.120