DOI QR코드

DOI QR Code

Comparison study of the effect of blending method on PVDF/PPTA blend membrane structure and performance

  • Li, Hongbin (School of Textiles Engineering, Henan Institute of Engineering) ;
  • Shi, Wenying (School of Textiles Engineering, Henan Institute of Engineering) ;
  • Zhang, Yufeng (State Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Materials Science and Engineering, Tianjin Polytechnic University) ;
  • Zhou, Rong (School of Textiles Engineering, Henan Institute of Engineering)
  • Received : 2014.03.28
  • Accepted : 2015.01.21
  • Published : 2015.05.25

Abstract

A novel hydrophilic poly (vinylidene fluoride)/poly (p-phenylene terephthalamide) (PVDF/PPTA) blend membrane was prepared by in situ polycondensation of p-phenylene diamine (PPD) and terephthaloyl chloride (TPC) in PVDF solution with subsequent nonsolvent induced phase separation (NIPS) process. For comparison, conventional solution blend membrane was prepared directly by adding PVDF powder into PPTA polycondensation solution. Blend membranes were characterized by means of viscometry, X-ray photoelectron spectroscopy (XPS), Field Emission Scanning Electron Microscopy (FESEM). The effects of different blending methods on membrane performance including water contact angle (WCA), mechanical strength, anti-fouling and anti-compression properties were investigated and compared. Stronger interactions between PVDF and PPTA in in situ blend membranes were verified by viscosity and XPS analysis. The incorporation of PPTA accelerated the demixing rate and caused the formation of a more porous structure in blend membranes. In situ blend membranes exhibited better hydrophilicity and higher tensile strength. The optimal values of WCA and tensile strength were $65^{\circ}$ and 34.1 MPa, which were reduced by 26.1% and increased by 26.3% compared with pure PVDF membrane. Additionally, antifouling properties of in situ blend membranes were greatly improved than pure PVDF membrane with an increasing of flux recovery ratio by 25%. Excellent anti-compression properties were obtained in in situ blend membranes with a stable pore morphology. The correlations among membrane formation mechanism, structure and performance were also discussed.

Keywords

References

  1. Adamczyk, N.M., Dameron, A.A., George, S.M. (2008), "Molecular Layer Deposition of Poly(p-phenylene terephthalamide) Films Using Terephthaloyl Chloride and p-Phenylenediamine", Langmuir, 24(5), 2081-2089. https://doi.org/10.1021/la7025279
  2. Chiang, C.Y., Reddy, M.J. and Chu, P.P. (2004), "Nano-tube $TiO_2$ composite PVdF/$LiPF_6$ solid membranes", Solid State Ionics, 175(1-4), 631-635. https://doi.org/10.1016/j.ssi.2003.12.039
  3. Feng, S.G., Shang, Y.M., Wang, S.B., Xie, X.F., Wang, Y.Z., Wang, Y.W and Xu, J.M. (2010), "Novel method for the preparation of ionically crosslinked sulfonated poly (arylene ether sulfone)/polybenzimidazole composite membranes via in situ polymerization", J. Membr. Sci., 346(1), 105-112. https://doi.org/10.1016/j.memsci.2009.09.026
  4. Feng, X., Guo, Y.F., Chen, X., Zhao, Y.P., Li, J.X., He, X.L. and Chen. L. (2012), "Membrane formation process and mechanism of PVDF-g-PNIPAAm thermo-sensitive membrane", Desalination, 290, 89-98. https://doi.org/10.1016/j.desal.2012.01.010
  5. Fu, T.Z., Zhao, C.J., Zhong, S.L., Zhang, G., Shao, K., Zhang, H.Q., Wang, J. and Na, H. (2007), "SPEEK/epoxy resin composite membranes in situ polymerization for direct methanol fell cell usages", J. Power Sources, 165(2), 708-716. https://doi.org/10.1016/j.jpowsour.2006.12.023
  6. Gao, X.L., Wang, H.Z., Wang, J., Huang, X. and Gao, C.J. (2013), "Surface-modified PSf UF membrane by UV-assisted graft polymerization of capsaicin derivative moiety for fouling and bacterial resistance", J. Membr. Sci., 445, 146-155. https://doi.org/10.1016/j.memsci.2013.05.026
  7. Han, M.M., Zhang, G., Li, M.Y., Wang, S., Liu, Z.G., Li, H.T., Zhang, Y., Xu, D., Wang, J., Ni, J. and Na, H. (2011), "Sulfonated poly(ether ether ketone)/ polybenzimidazole oligomer/epoxy resin composite membranes in situ polymerization for direct methanol fuel cell usages", J. Power Sources, 196(23), 9916-9923. https://doi.org/10.1016/j.jpowsour.2011.08.049
  8. Hashim, N.A., Liu, F., Moghareh, M.R. and Li, K. (2012), "Chemistry in spinning solutions: Surface modification of PVDF membranes during phase inversion", J. Membr. Sci., 415, 399-411.
  9. Hegde, C., Isloor, A.M., Padaki, M., Ismail, A.F. and Lau, W.J. (2012), "New CPS-PPEES blend membranes for $CaCl_2$ and NaCl rejection", Membr. Water Treat., Int. J., 3(1), 25-34. https://doi.org/10.12989/mwt.2012.3.1.025
  10. Huang, Y.J., Ye, Y.S., Syu, Y.J., Hwang, B.J. and Chang, F.C. (2012), "Synthesis and characterization of sulfonated polytriazole-clay proton exchange membrane by in situ polymerization and click reaction for direct methanol fuel cells", J. Power Sources, 208, 144-152. https://doi.org/10.1016/j.jpowsour.2012.02.007
  11. Ji, Y.L., Ma, J.H. and Liang, B.R. (2005), "In situ polymerization and in situ compatibilization of polymer blends of poly(2,6-dimethyl-1,4-phenylene oxide) and polyamide 6", Mater. Lett., 59(16), 1997-2000. https://doi.org/10.1016/j.matlet.2005.02.021
  12. Kabay, N., Bryjak, M., Schlosser, S., Kitis, M., Avlonitis, S., Matejka, Z., Al-Mutaz, I. and Yuksel, M. (2008), "Adsorption-membrane filtration (AMF) hybrid process for boron removal from seawater: An overview", Desalination, 22(1-3), 338-48.
  13. Kim, K.J., Cho, H.W. and Yoon, K.J. (2003), "Effect of P(MMA-co-MAA) compatibilizer on the miscibility of nylon 6/PVDF blends", Eur. Polym. J., 39(6), 1249-1265. https://doi.org/10.1016/S0014-3057(02)00366-X
  14. Kiya-Oglu, V.N., Rozhdestvenskaya, T.A. and Serova, L.D. (1997), "Rheological properties of liquidcrystalline solutions of poly(p-phenylene terephthalamide) and behavior of the jet in spinning through an air space", Fiber Chem., 29(2), 81-86. https://doi.org/10.1007/BF02430696
  15. Knijnenberg, A., Bos, J. and Dingemans, T.J. (2010), "The synthesis and characterisation of reactive poly(p-phenylene terephthalamide)s: A route towards compression stable aramid fibers", Polym., 51(9), 1887-1897. https://doi.org/10.1016/j.polymer.2010.03.015
  16. Li, C.W. and Chen, Y.S. (2004), "Fouling of UF membrane by humic substance: effects of molecular weight and powder-activated carbon (PAC) pre-treatment", Desalination, 170(1), 59-67. https://doi.org/10.1016/j.desal.2004.03.015
  17. Lin, D.J., Chang, C.L., Huang, F.M. and Cheng, L.P. (2003), "Effect of salt additive on the formation of microporous poly(vinylidene fluoride) membranes by phase inversion from LiClO4/Water/DMF/PVDF system", Polym., 44(2), 413-422. https://doi.org/10.1016/S0032-3861(02)00731-0
  18. Liu, F., Hashim, N.A., Liu, Y.T. and Abed, M.R. (2011), "Progress in the production and modification of PVDF membranes", J. Membr. Sci., 375(1-2), 1-27. https://doi.org/10.1016/j.memsci.2011.03.014
  19. Liu, F., Tao, M.M. and Xue, X.L. (2012a), "A novel method of combining in situ polymerization and non-solvent assisted thermally induced micro-phase separation to improve membrane hydrophilicity", Procedia Eng., 44, 1433-1434. https://doi.org/10.1016/j.proeng.2012.08.817
  20. Liu, B.C., Chen, C., Zhang, W., Crittenden, J. and Chen, Y.S. (2012b), "Low-cost antifouling PVC ultrafiltration membrane fabrication with Pluronic F 127: Effect of additives on properties and performance", Desalination, 307, 26-33. https://doi.org/10.1016/j.desal.2012.07.036
  21. Loh, C.H. and Wang, R. (2013), "Insight into the role of amphiphilic pluronic block copolymer as pore-forming additive in PVDF membrane formation", J. Membr. Sci., 446, 492-503. https://doi.org/10.1016/j.memsci.2013.07.016
  22. Madaeni, S.S., Zinadini, S. and Vatanpour, V. (2011), "A new approach to improve antifouling property of PVDF membrane using in situ polymerization of PAA functionalized $TiO_2$ nanoparticles", J. Membr. Sci., 380(1-2), 155-162. https://doi.org/10.1016/j.memsci.2011.07.006
  23. Meng, J.Q., Yuan, T., Kurth, C.J., Shi, Q. and Zhang, Y.F. (2012), "Synthesis of antifouling nanoporous membranes having tunable nanopores via clickchemistry", J. Membr. Sci., 401-402, 109-117. https://doi.org/10.1016/j.memsci.2012.01.049
  24. Nasef, M.M. and Hegazy, E.S. (2004), "Preparation and applications of ion exchange membranes by radiation-induced graft copolymerization of polar monomers onto non-polar films", Prog. Polym. Sci., 29(6), 499-561. https://doi.org/10.1016/j.progpolymsci.2004.01.003
  25. Pang, R.Z., Li, J.S., Wei, K.J. and Shen, J.Y. (2011), "In situ preparation of Al-containing PVDF ultrafiltration membrane via sol-gel process", J. Colloid Interf. Sci., 364(2), 373-378. https://doi.org/10.1016/j.jcis.2011.09.001
  26. Petkova, R., Tcholakova, S. and Denkov, N.D. (2012), "Foaming and foam stability for mixed polymer-surfactant solutions: effects of surfactant type and polymer charge", Langmuir, 28(11), 4996-5009. https://doi.org/10.1021/la3003096
  27. Rao, Y., Waddon, A.J. and Farris, R.J. (2001), "The evolution of structure and properties in poly (p-phenylene terephthalamide) fibers", Polym., 42(13), 5925-5935. https://doi.org/10.1016/S0032-3861(00)00906-X
  28. Shi, H.Y, Liu, F. and Xue, L.X. (2013), "Fabrication and characterization of antibacterial PVDF hollow fibre membrane by doping Ag-loaded zeolites", J. Membr. Sci., 437, 205-215. https://doi.org/10.1016/j.memsci.2013.03.009
  29. Souza, P. and Baird, D.G. (1996), "In situ composites based on blends of a poly(ether imide) and thermotropic liquid crystalline polymers under injection moulding conditions", Polymer, 37(10), 1985-1997. https://doi.org/10.1016/0032-3861(96)87317-4
  30. Sukitpaneenit, P. and Chung, T.S. (2009), "Molecular elucidation of morphology and mechanical properties of PVDF hollow fiber membranes from aspects of phase inversion, crystallization and rheology", J. Membr. Sci., 340(1-2), 192-205. https://doi.org/10.1016/j.memsci.2009.05.029
  31. Vaughan, B., Peter, J., Marand, E., Bleha, M. and Bleha, M. (2008), "Transport properties of aluminophosphate nanocomposite membranes prepared by in situ polymerization", J. Membr. Sci., 316(1-2), 153-163. https://doi.org/10.1016/j.memsci.2007.11.046
  32. Woo, J.B., Won, H.J. and Yun, H.P. (2003), "Preparation of polystyrene/polyaniline blends by in situ polymerization technique and their morphology and electrical property", Synth. Met., 132(3), 239-244. https://doi.org/10.1016/S0379-6779(02)00451-4
  33. Yang, Y.F., Li, Y., Li, Q.L., Wan, L.S. and Xu, Z.K. (2010), "Surface hydrophilization of microporous polypropylene membrane by grafting zwitterionic polymer for anti-biofouling", J. Membr. Sci., 362(1-2), 255-264. https://doi.org/10.1016/j.memsci.2010.06.048
  34. Yeh, H.M., Ho, C.D. and Li, C.H. (2012), "Effects of ring number and baffled-ring distances on ultrafiltration in the tubular membrane inserted concentrically with a ring rod", Membr. Water Treat., Int. J., 3(1), 51-62. https://doi.org/10.12989/mwt.2012.3.1.051
  35. Yuliwati, E., Ismail, A.F., Matsuura, T., Kassim, M.A. and Abdullah, M.S. (2011), "Effect of modified PVDF hollow fiber submerged ultrafiltration membrane for refinery wastewater treatment", Desalination, 283, 214-220. https://doi.org/10.1016/j.desal.2011.03.049
  36. Zhang, P.Y., Xu, Z.L., Yang, H., Wei, Y.M. and Wu, W.Z. (2013), "Fabrication and characterization of PVDF membranes via an in situ free radical polymerization method", Chem. Eng. Sci., 97, 296-308. https://doi.org/10.1016/j.ces.2013.03.058
  37. Zhao, Y.H., Zhu, B.K., Kong, L. and Xu, Y.Y. (2007), "Improving hydrophilicity and protein resistance of poly(vinylidene fluoride) membranes by blending with amphiphilic hyper branched star polymer", Langmuir, 23(10), 5779-5786. https://doi.org/10.1021/la070139o
  38. Zhao, S., Wang, Z., Wei, X., Tian, X.X., Wang, J.X., Yang, S.B. and Wang, S.C. (2011), "Comparison study of the effect of PVP and PANI nanofibers additives on membrane formation mechanism, structure and performance", J. Membr. Sci., 385-386, 110-122. https://doi.org/10.1016/j.memsci.2011.09.029

Cited by

  1. Preparation and characterization of PVDF/alkali-treated-PVDF blend membranes vol.7, pp.5, 2016, https://doi.org/10.12989/mwt.2016.7.5.417
  2. Poly(p-phenylene terephthamide) embedded in a polysulfone as the substrate for improving compaction resistance and adhesion of a thin film composite polyamide membrane vol.5, pp.26, 2017, https://doi.org/10.1039/C7TA02552A
  3. Development of blend membrane by sulfonated polyethersulfone for whey ultrafiltration vol.7, pp.2, 2016, https://doi.org/10.12989/mwt.2016.7.2.155
  4. Preparation of Nano-SiO 2 /Al 2 O 3 /ZnO-Blended PVDF Cation-Exchange Membranes with Improved Membrane Permselectivity and Oxidation Stability vol.11, pp.12, 2015, https://doi.org/10.3390/ma11122465