DOI QR코드

DOI QR Code

Yellow, Orange, and Red Phosphorescent Materials for OLED Lightings

OLED 조명을 위한 Yellow, Orange, Red 인광 재료

  • Jung, Hyocheol (Department of Chemistry, Catholic University of Korea) ;
  • Park, Young-Il (Research Center for Green Fine Chemicals, Korea Research Institute Technology) ;
  • Kim, Beomjin (Research Center for Green Fine Chemicals, Korea Research Institute Technology) ;
  • Park, Jongwook (Department of Chemistry, Catholic University of Korea)
  • 정효철 (가톨릭대학교 화학화) ;
  • 박영일 (한국화학연구원 그린정밀화학연구센터) ;
  • 김범진 (한국화학연구원 그린정밀화학연구센터) ;
  • 박종욱 (가톨릭대학교 화학화)
  • Received : 2015.05.11
  • Published : 2015.06.10

Abstract

Organic light-emitting diode (OLED) research field has received great attention from academic and industrial circles. Recently, The technical feature of OLEDs is more and more attractive in the lighting market, including area emission characteristics different from other existing light sources. Features are environmentally friendly and efficient use of energy, large area, ultra-light weight, and ultrathin shape, etc. Furthermore, OLED light became the mainstream of next-generation lighting to replace the light emitting diode (LED) fluorescent light. This article summarizes phosphorescent emitting materials that have been applied to white OLEDs. In particular, the chemical structures and device performances of the important yellow, orange, and red phosphorescent emitting materials is discussed. Systematic classification and understanding of the phosphorescent materials can aid the development of new light-emitting materials.

유기 발광 다이오드(OLED)는 학문 및 산업 분야에서 많은 관심을 받아왔다. OLED는 기존에 사용되고 있는 광원들과는 달리 면 발광, 친환경적인 에너지 사용, 대면적, 초경량, 그리고 초박형 등의 차별화된 특징을 가지고 있기 때문에 최근 조명 시장에서 많은 관심을 받고 있다. 게다가, OLED 조명은 LED 형광등을 대체할 수 있는 차세대 조명으로써 주목되고 있다. 본 논문에서는 white OLED (WOLED)에 적용되고 있는 대표적인 인광 발광 재료들을 소개하며, 특히 yellow, orange, red 인광 물질들의 화학구조와 소자효율을 정리하였다. 이러한 선행연구의 물질들을 이해하고 인광 물질들을 체계적으로 분류함으로써 새로운 발광 재료를 연구하고 개발함에 있어서 많은 도움이 되리라고 생각한다.

Keywords

References

  1. C. W. Tang and S. A. Vanslyke, Organic electroluminescent diodes, Appl. Phys. Lett., 51, 913-915 (1987). https://doi.org/10.1063/1.98799
  2. Z. Shen, P. E. Burrows, V. Bulovic, S. R. Forrest, and M. E. Thompson, Three-color, tunable, organic light-emitting devices, Science, 276, 2009-2011 (1997). https://doi.org/10.1126/science.276.5321.2009
  3. S. R. Forrest, The road to high efficiency organic light emitting devices, Org. Electron., 4, 45-48 (2003). https://doi.org/10.1016/j.orgel.2003.08.014
  4. A. R. Duggal, J. J. Shiang, C. M. Heller, and D. F. Foust, Organic light-emitting devices for illumination quality white light, Appl. Phys. Lett., 80, 3470-3472 (2002). https://doi.org/10.1063/1.1478786
  5. B. W. D'Andrade and S. R. Forrest, White organic light-emitting devices for solid-state lighting, Adv. Mater., 16, 1585-1595 (2004). https://doi.org/10.1002/adma.200400684
  6. C. P. Wang, M. H. Wu, H. W. Lin, H. C. Pan, B. H. Liu, and J. H. Jou, High-efficiency flexible white organic light-emitting diodes, J. Mater. Chem., 20, 6626-6629 (2010). https://doi.org/10.1039/c0jm01348j
  7. Y. L. Chang, Y. Song, Z. Wang, M. G. Helander, J. Qiu, L. Chai, Z. Liu, G. D. Scholes, and Z. Lu, Highly efficient warm white organic light-emitting diodes by triplet exciton conversion, Adv. Funct. Mater., 23, 705-712 (2012).
  8. S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lussem, and K. Leo, White organic light-emitting diodes with fluorescent tube efficiency, Nature, 459, 234-238 (2009). https://doi.org/10.1038/nature08003
  9. M. Thomschke, S. Reineke, B. Lussem, and K. Leo, Highly efficient white top-emitting organic light-emitting diodes comprising laminated microlens films, Nano Lett., 12, 424-428 (2012). https://doi.org/10.1021/nl203743p
  10. C. Fan, L. Zhu, B. Jiang, Y. Li, F. Zhao, D. Ma, J. Qin, and C. Yang, High power efficiency yellow phosphorescent OLEDs by using new iridium complexes with halogen-substituted 2-phenylbenzo[ d]thiazole ligands, J. Phys. Chem. C, 117, 19134-19141 (2013). https://doi.org/10.1021/jp406220c
  11. J. H. Jou, Y. X. Lin, S. H. Peng, C. J. Li, Y. M. Yang, C. L. Chin, J. J. Shyue, S. S. Sun, M. Lee, C. T. Chen, M. C. Liu, C. C. Chen, G. Y. Chen, J. H. Wu, C. H. Li, C. F. Sung, M. J. Lee, and J. P. Hu, Highly efficient yellow organic light emitting diode with a novel wet- and dry-process feasible iridium complex emitter, Adv. Funct. Mater., 24, 555-562 (2014). https://doi.org/10.1002/adfm.201302013
  12. S. L. Lai, W. Y. Tong, S. C. F. Kui, M. Y. Chan, C. C. Kwok, and C. M. Che, Highly efficiency white organic Light emitting devices incorporating yellow phosphorescent platinium(II) complex and composite blue host, Adv. Funct. Mater., 23, 5168-5176 (2013). https://doi.org/10.1002/adfm.201300281
  13. G. Cheng, S. C. F. Kui, W. H. Ang, M. Y. Ko, P. K. Chow, C. L. Kwong, C. C. Kwok, C. Ma, X. Guan, K. H. Low, S. J. Su, and C. M. Che, Structurally robust phosphorescent [Pt(O^N^C^N)] emitters for high performance organic light-emitting devices with power efficiency up to 126 lm $W^{-1}$ and external quantum efficiency over 20%, Chem. Sci., 5, 4819-4830 (2014). https://doi.org/10.1039/C4SC01105H
  14. H. Cao, G. Shan, X. Wen, H. Sun, Z. Su, R. Zhong, W. Xie, P. Lia, and D. Zhua, An orange iridium(III) complex with wide-bandwidth in electroluminescence for fabrication of high-quality white organic lught-emitting diodes, J. Mater. Chem. C, 1, 7371-7379 (2013). https://doi.org/10.1039/c3tc31365d
  15. R. Wang, D. Liu, H. Ren, T. Zhang, H. Yin, G. Liu, and J. Li, Highly efficient orange and white organic light emitting diodes based on new orange iridium complexes, Adv. Mater., 23, 2823-2827 (2011). https://doi.org/10.1002/adma.201100302
  16. R. Wang, D. Liu, R. Zhang, L. Deng, and J. Li, Solution-processable iridium complexes for efficient orange-red and white organic light-emitting diodes, J. Mater. Chem., 22, 1411-1417 (2012). https://doi.org/10.1039/C1JM13846D
  17. M. Tavasli, T. N. Moore, Y. Zheng, M. R. Bryce, M. A. Fox, G. C. Griffiths, V. Jankus, H. A. Al-Attar, and A. P. Monkman, Colour tuning from green to red by substituent effects in phosphorescent tris-cyclometalated iridium(III) complexes of carbazole- based ligands: synthetic, photophysical, computational and high efficiency OLED studies, J. Mater. Chem., 22, 6419-6428 (2012). https://doi.org/10.1039/c2jm15049b
  18. A. Tsuboyama, H. Iwawaki, M. Furugori, T. Mukaide, J. Kamatani, S. Igawa, T. Moriyama, S. Miura, T. Takiguchi, S. Okada, M. Hoshino, and K. Ueno, Homoleptic cyclometalated iridium complexes with highly efficient red phosphorescence and application to organic light-emitting diode, J. Am. Chem. Soc., 125, 12971-12979 (2003). https://doi.org/10.1021/ja034732d
  19. B. S. Du, J. L. Liao, M. H. Huang, C. H. Lin, H. W. Lin, Y. Chi, H. A Pan, G. L. Fan, K. T. Wong, G. H. Lee, and P. T. Chou, Os(II) based green to red phosphors: a great prospect for solution-processed, highly efficient organic light-emitting diodes, Adv. Funct. Mater., 22, 3491-3499 (2012). https://doi.org/10.1002/adfm.201200718
  20. H. Fukagawa, T. Shimizu, H. Hanashima, Y. Osada, M. Suzuki, and H. Fujikake, Highly efficient and stable red phosphorescent organic light-emitting diodes using platinum complexes, Adv. Mater., 24, 5099-5103 (2012). https://doi.org/10.1002/adma.201202167

Cited by

  1. Light-Emission Characteristics of Organic Light-Emitting Diodes Driven by Alternating Current vol.29, pp.10, 2016, https://doi.org/10.4313/JKEM.2016.29.10.625