DOI QR코드

DOI QR Code

Totem-pole Bridgeless Boost PFC Converter Based on GaN FETs

GaN FET을 이용한 토템폴 구조의 브리지리스 부스트 PFC 컨버터

  • Jang, Paul (Dept. of Electrical and Computer Eng., Seoul National Univ.) ;
  • Kang, Sang-Woo (Dept. of Electrical and Computer Eng., Seoul National Univ.) ;
  • Cho, Bo-Hyung (Dept. of Electrical and Computer Eng., Seoul National Univ.) ;
  • Kim, Jin-Han (DMC R&D Center, Samsung Electronics) ;
  • Seo, Han-Sol (DMC R&D Center, Samsung Electronics) ;
  • Park, Hyun-Soo (DMC R&D Center, Samsung Electronics)
  • Received : 2015.01.30
  • Accepted : 2015.04.05
  • Published : 2015.06.20

Abstract

The superiority of gallium nitride FET (GaN FET) over silicon MOSFET is examined in this paper. One of the outstanding features of GaN FET is low reverse-recovery charge, which enables continuous conduction mode operation of totem-pole bridgeless boost power factor correction (PFC) circuit. Among many bridgeless topologies, totem-pole bridgeless shows high efficiency and low conducted electromagnetic interference performance, with low cost and simple control scheme. The operation principle, control scheme, and circuit implementation of the proposed topology are provided. The converter is driven in two-module interleaved topology to operate at a power level of 5.5 kW, whereas phase-shedding control is adopted for light load efficiency improvement. Negative bias circuit is used in gate drivers to avoid the shoot-through induced by high speed switching. The superiority of GaN FET is verified by constructing a 5.5 kW prototype of two-module interleaved totem-pole bridgeless boost PFC converter. The experiment results show the highest efficiency of 98.7% at 1.6 kW load and an efficiency of 97.7% at the rated load.

Keywords

References

  1. S. Ji, D. Reusch, and F. C. Lee, "High-frequency high power density 3-D integrated gallium-nitride-based point of load module design," IEEE Transactions on Power Electronics, Vol. 28, No 9, pp. 4216-4226, Sep. 2013. https://doi.org/10.1109/TPEL.2012.2235859
  2. J. Delaine, P. Jeannin, D. Frey, and K. Guepratted, "High frequency DC-DC converter using GaN device," in Proc. IEEE APEC, pp. 1754-1761, Feb. 2012.
  3. Y. Zhang, M. Rodriguez, D. Maksimovic, "High frequency synchronous buck converter using GaN-on-SiC HEMTs," in Proc. IEEE ECCE, pp. 1279-1283, Sep. 2013.
  4. W. Saito, T. Nitta, Y. Kakiuchi, Y. Saito, K. Tsuda, I. Omura, and M. Yamaguchi, "A 120-W boost converter operation using a high-voltage GaN-HEMT," IEEE Electron. Device Lett., Vol. 29, No. 1, pp. 8-10, Jan. 2008. https://doi.org/10.1109/LED.2007.910796
  5. D. Costinett, H. Nguyen, R. Zane, and D. Maksimovic, "GaN-FET based dual active bridge DC-DC converter," in Proc. IEEE APEC, pp. 1425-1432, Mar. 2011.
  6. A. Hariya, K. Matsuura, H. Yanagi, S. Tomioka, Y. Ishizuka, and T. Ninomiya, "5MHz PWM-controlled current-mode resonant DC-DC converter with GaN-FETs," in Proc. IEEE APEC, pp. 1426-1432. Mar. 2014.
  7. J. Delaine, P. O. Jeannin, D. Frey and K. Guepratte, "Improvement of GaN transistors working conditions to increase efficiency of A 100W DC-DC converter," in Proc. IEEE APEC, pp. 656-663, Mar. 2013.
  8. B. Wang, N. Tipirneni, M. Riva, A. Monti, G. Simin, and E. Santi, "An efficient, high-frequency drive circuit for GaN power HFETs," IEEE Trans. Ind. Appl., Vol. 45, No. 2, pp. 843-853, Mar./Apr. 2009. https://doi.org/10.1109/TIA.2009.2013578
  9. Z. Liu, X. Huang, M. Mu, Y. Yang, F. C. Lee, and Q. Li, "Design and evaluation of GaN-based dual-phase interleaved MHz critical mode PFC converter," in Proc. IEEE ECCE, pp. 611-616, Sep. 2014.
  10. L. Huber, Y. Jang, and M. M. Jovanovic, "Performance evaluation of bridgeless PFC boost rectifiers," IEEE Trans. Power Electron., Vol. 23, No. 3, pp. 1381-1390, May 2008. https://doi.org/10.1109/TPEL.2008.921107
  11. B. Lu, R. Brown, M. Soldano, "Bridgeless PFC implementation using one cycle control technique," in Proc. IEEE APEC, pp. 812-817, Mar. 2005.
  12. J. W. Shin, S. J. Choi, and B. H. Cho, "High-efficiency bridgeless flyback rectifier with bidirectional switch and dual output windings," IEEE Transactions on Power Electronics, Vol. 29, No 9, pp. 4752-4762, Sep. 2014. https://doi.org/10.1109/TPEL.2013.2283073
  13. Y. T. Jang, and M. M. Jovanovic, "A bridgeless PFC boost rectifier with optimized magnetic utilization," IEEE Transactions on Power Electronics, Vol. 24, No 1, pp. 85-93, Jan. 2009. https://doi.org/10.1109/TPEL.2008.2006054
  14. Q. Li, M. A. E. Andersen and O. C. Thomsen, "Conduction losses and common mode EMI analysis on bridgeless power factor correction," in Proc. PEDS, pp. 1255-1260, 2009.
  15. F. Musavi, M. Edington, W. Eberle, and W. G. Dunford, "Evaluation and efficiency comparison of front end AC-DC plug-in hybrid charger topology," IEEE Trans. Smart Grid, Vol. 3, No. 1, pp. 413-421, Mar. 2012. https://doi.org/10.1109/TSG.2011.2166413
  16. B. Su, J. Zhang, and Z. Lu, "Totem-pole boost bridgeless PFC rectifier with simple zero-current detection and full-range ZVS operating at the boundary of DCM/CCM," IEEE Trans. Power Electron., Vol. 26, No. 2, pp. 427-435, Feb. 2011. https://doi.org/10.1109/TPEL.2010.2059046
  17. D. M. Van de Sype, K. De Gusseme, A. P. M. Van den Bossche, and J. A. Melkebeek, "Duty-ratio feedforward for digitally controlled boost PFC converters," IEEE Trans. Ind. Electron., Vol. 52, No. 1, pp. 108-115, Feb. 2005. https://doi.org/10.1109/TIE.2004.841127