DOI QR코드

DOI QR Code

Can Index Decomposition Analysis Give a Clue in Understanding Industry's Greenhouse Gas Footprint?

산업의 온실가스 배출 행태 이해를 위한 지수분해분석 적합성 실증 연구

  • Chung, Whan-Sam (Division of Nuclear Policy Research, Korea Atomic Energy Research Institute) ;
  • Tohno, Susumu (Graduate School of Energy Science, Kyoto University)
  • Received : 2014.09.10
  • Accepted : 2015.02.27
  • Published : 2015.03.31

Abstract

Korea is one of the few OECD countries having no binding Greenhouse gas (GHG) emissions reduction obligations under the Kyoto Protocol. Korea is going to enforce a powerful greenhouse gas emissions control to the industry from 2015. Current GHG reduction policies do not take into account the trade-off between economic growth and GHG mitigation, this approach will not be sustainable. Sectoral approach, considering industry by industry may be more eco-friend approach. This study verified the validity of the analysis results counted from whole procedure of energy input-output analysis and decomposition analysis to sector 'Organic basic chemical products' and 'Cement and concrete products'. Empirical test was performed using changes in energy consumption, production, process improvements and new facilities. Although the results showed unstable fluctuations from Divisia index decomposition analysis, it was verified that the entire procedure can provide a clue in understanding of the industry's energy and GHG footprint.

한국은 OECD 국가 가운데 교토협약에 따른 온실가스 감축의무를 갖지 않는 몇 안 되는 국가이다. 한국은 자발적으로 2015년부터 강력한 온실가스 감축을 단행하기로 하였다. 정부의 현정책들은 온실가스 감축에 따른 경제성장의 저하를 감안하지 않고 있어, 이 정책의 지속성이 제약된다. 이 점에서 산업의 부문별 특성을 감안한 감축전략이 더욱 친환경적 전략이 될 수 있다. 이 연구는 혼합단위를 사용한 에너지 산업연관분석에서부터 온실가스 배출에 유의미한 산업을 선정해 분해분석을 함으로써 유용성을 검증하였다. 유의미한 산업은 '유기화학기초제품군'과 '시멘트 및 콘크리트 산업'을 대상으로 삼았다. 변이는 에너지 소비, 생산, 공정개선 그리고 신시설의 도입 효과로 구분해 실증되었다. 이 연구에서 디비지아 분해분석 결과치들이 부분적으론 불안정적 시계열 패턴을 보였으나, 전체분석 과정으로 보면 일련의 분석과정은 대상산업의 에너지 사용과 온실가스 배출의 행태를 이해하기에 충분한 정보를 제공하였다.

Keywords

References

  1. 김승우, 기후변화협약 대응을 위한 국내산업 체질 개선방안, 한국환경정책.평가연구원, 98-RE15, 1998, pp. 64-73.
  2. 김윤경, "환경산업연관표 2000을 이용한 산업부문의 이산화탄소($CO_2$) 발생 분석," 자원.환경경제연구, 제15권, 제3호, 2006, pp. 425-450.
  3. 김정민, 산업연관분석론을 통한 우리 나라 이산화탄소 배출현황에 대한 분석, 서울대학교 대학원: 자원공학과, 석사논문, 2004.
  4. 대한민국정부, 기후변화 협약에 따른 제3차 대한민국 국가보고서, 2012.
  5. 박준영, 구조분해분석을 이용한 $CO_2$ 배출량 변화요인분석에 관한 연구, 서울대학교 대학원: 자원공학과, 석사논문, 1999.
  6. 박성배, 한국 에너지 다소비산업의 에너지효율 분석, 삼성경제연구소, Issue Paper, 2009.
  7. 에너지경제연구원, 2011년도 에너지총조사 보고서, 2012a.
  8. 에너지경제연구원, 2011 에너지통계연보, 2012b.
  9. 최한주.이기훈, "우리나라 수출상품에 체화된 이산화탄소 배출량의 추정," 자원.환경경제연구, 제13권, 제3호, 2004, pp. 441-468.
  10. Ang, B. W., "Decomposition Analysis for Policymaking in Energy: Which is the Preferred Methods?," Energy Policy, Vol. 32, 2004, pp. 1131-1139. https://doi.org/10.1016/S0301-4215(03)00076-4
  11. Ang, B. W. and K. H. Choi, "Decomposition of Aggregate Energy and Gas Emission Intensities for Iindustry: a Refined Divisia Index Method," The Energy J., Vol. 18, 1997, pp. 59-73.
  12. Chung, W. S. and S. Tohno, "A Time-series Energy Input-output Analysis for Building an Infrastructure for the Energy and Environment Policy in South Korea," Energy & Environment, Vol. 20, 2009, pp. 875-899. https://doi.org/10.1260/095830509789625338
  13. Chung, W. S., S. Tohno and K. H. Choi, "Socio-Technological Impact Analysis using an Energy IO Approach to GHG Emissions Issues in South Korea," Applied Energy, Vol. 88, 2011, pp. 3747-3758. https://doi.org/10.1016/j.apenergy.2011.03.033
  14. Chung, W. S., S. Tohno, and S. Shim, "An Estimation of Energy and GHG Emission Intensity Caused by Energy Consumption in Korea: An Energy IO approach," Applied Energy, Vol. 86, 2009, pp. 1902-1914. https://doi.org/10.1016/j.apenergy.2009.02.001
  15. Cruz, L. G., "Energy-environment-economy Interactions: An IO Approach Applied to the Portuguese Case," Paper for the 7th Biennial Conference of the International Society for Ecological Economics, Environment and Development: Globalisation & the Challenges for Local & International Governance. March 6-9, 2002, Sousse. 2002. (Tunisia)
  16. Gay, P. W. and J. L. R. Proops, "Carbon-dioxide Production by the UK Economy: An IO Assessment," Applied Energy, Vol. 44, 1993, pp. 113-130. https://doi.org/10.1016/0306-2619(93)90057-V
  17. Hoekstra, R., Economic Growth, Material Flows and the Environment, Edward Elgar, 2005.
  18. Hondo, H., S. Sakai and S. Tanno, "Sensitivity Analysis of Total $CO_2$ Emission Intensities Estimated Using an Input-output Table," Applied Energy, Vol. 72, 2002, pp. 689-704. https://doi.org/10.1016/S0306-2619(02)00059-4
  19. Hondo, H., Y. Uchiyama, and Y. Moriizumi, Evaluation of Power Technologies Based on Life Cycle $CO_2$ Emissions, Socio-economic Research Center, CRIEPI, no. Y99009, 2002. (in Japanese)
  20. IEA, $CO_2$ Emissions from Fuel Combustion 2012, 2013.
  21. Lenzen, M., "Primary Energy and Greenhouse Gases Embodied in Australian Final Consumption: An IO Analysis," Energy Policy, Vol. 26, 1998, pp. 495-506. https://doi.org/10.1016/S0301-4215(98)00012-3
  22. Lin, S. J., I. J. Lu, and C. Lewis, "Identifying Key Factors and Strategies for Reducing Industrial $CO_2$ Emissions from a Non-Kyoto Protocol Member's (Taiwan) Perspective," Energy Policy, Vol. 34, 2006, pp. 1499-1507. https://doi.org/10.1016/j.enpol.2005.08.006
  23. Miller, R. E. and P. D. Blair, IO analysis: Foundations and Extensions, Prentice-Hall Inc. 1985.
  24. Miller, R. E. and P. D. Blair, IO analysis: Foundations and Extensions, 2nd edn. Cambridge University Press, 2009.
  25. Nansai, K., Y. Moriguchi and S. Tohno, "Compilation and Application of Japanese Inventories for Energy Consumption and Air Pollutant Emissions Using Input-output Tables," Environmental Science & Technology, Vol. 47, 2003, pp. 2005-2015.
  26. Nansai, K., Y. Moriguchi and S. Tohno, Embodied Energy and Emission Intensity Data for Japan Using IO Tables(3EID), Center for Global Environmental Research (CGER), CGER-D031-2002. 2002.
  27. Rhee, H. and H. Chung, "Change in $CO_2$ Emission and Its Transmissions between Korea and Japan Using International Input-output Analysis," Ecological Economics, Vol. 58, 2006, pp. 788-800. https://doi.org/10.1016/j.ecolecon.2005.09.005
  28. Sands, R. D. and K. Schumacher, "Economic Comparison of Greenhouse Gas Mitigation Options in Germany," Energy Efficiency, Vol. 2, 2009, pp. 17-36. https://doi.org/10.1007/s12053-008-9031-9
  29. Tsukamoto, T., F. Koide, and Y. Uchiyama, "Life Cycle Analysis of Various Electricity Sectors Using a Time-series Input-output Table," J. of Japan Society of Energy and Resources, Vol. 29, 2008, pp. 1-6.
  30. Wiedmann, T. et al., "A Carbon Footprint Time Series of the UK-results from a Multiregion in Input-output Model," Economic Systems Research, Vol. 22, 2010, pp. 19-42. https://doi.org/10.1080/09535311003612591